SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

本文主要是介绍SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.基于SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

麻雀算法(Sparrow Search Algorithm)是一种基于麻雀觅食行为的启发式优化算法,用于解决优化问题。它模拟了麻雀觅食的过程,通过搜索和调整候选解来逐步优化目标函数的值。

SSA-TCN-BiGRU-Attention是一个复合模型,用于多变量时间序列预测。让我逐步解释每个部分的含义:

SSA(Sparrow Search Algorithm):这是优化算法的部分,用于调整模型的参数以获得更好的预测性能。

TCN(Temporal Convolutional Network):这是一种基于卷积神经网络的模型,用于处理时间序列数据。TCN使用一系列不同大小的卷积核对时间序列数据进行卷积操作,以捕捉不同时间尺度上的特征。

BiGRU(Bidirectional Gated Recurrent Unit):这是一种双向门控循环单元模型,用于学习时间序列数据中的时序依赖关系。BiGRU能够同时考虑过去和未来的信息,以更好地建模序列数据的动态性。

Attention(注意力机制):这是一种机制,用于在模型的不同部分自动地分配注意力权重。在多变量时间序列预测中,注意力机制可以帮助模型自动选择对预测目标最重要的输入变量。

综合以上四个部分,SSA-TCN-BiGRU-Attention模型结合了优化算法、时间卷积、双向门控循环单元和注意力机制,旨在提高多变量时间序列预测的准确性和性能。通过使用麻雀算法进行参数优化,结合卷积、循环和注意力机制的特性,该模型能够更好地捕捉时间序列数据中的时序依赖关系和重要特征,从而实现更准确的预测。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

%% 麻雀算法优化TCN-BiGRU-Attention,实现多变量输入单步预测clc;
clear 
close allX = xlsread('data.xlsx');
num_samples = length(X);                            % 样本个数 
kim = 6;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(X,2);%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.9;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
end%% 优化算法优化前,构建优化前的TCN_BiGRU_Attention模型outputSize = 1;  %数据输出y的维度  
numFilters = 64;
filterSize = 5;
dropoutFactor = 0.1;
numBlocks = 2;layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);     convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")layerNormalizationLayerreluLayerdropoutLayer(dropoutFactor) additionLayer(2,Name="add_"+i)];% Add and connect layers.lgraph = addLayers(lgraph,layers);lgraph = connectLayers(lgraph,outputName,"conv1_"+i);% Skip connection.if i == 1% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
endtempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);tempLayers = gruLayer(NumNeurons,"Name","gru1");
lgraph = addLayers(lgraph,tempLayers);tempLayers = [FlipLayer("flip3")gruLayer(NumNeurons,"Name","gru2")];
lgraph = addLayers(lgraph,tempLayers);tempLayers = [concatenationLayer(1,2,"Name","concat")

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

这篇关于SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/834173

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语