[LLM] 大模型基础|预训练|有监督微调SFT | 推理

2024-03-19 08:44

本文主要是介绍[LLM] 大模型基础|预训练|有监督微调SFT | 推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

现在的大模型在进行预训练时大部分都采用了GPT的预训练任务,即 Next token prediction。

标题:Language Model Training and Inference: From Concept to Code

作者:CAMERON R. WOLFE

原文链接:https://cameronrwolfe.substack.com/p/language-model-training-and-inference

要理解大语言模型(LLM),首先要理解它的本质,无论预训练、微调还是在推理阶段,核心都是next token prediction,也就是以自回归的方式从左到右逐步生成文本。

基本概念:

  • Token:在NLP中,一个“token”可以是一个词、一个字或一个标点符号。例如,句子“我爱北京”被切分成三个tokens: “我”, “爱” 和 “北京”。
  • Prediction:预测是指根据模型的当前输入,猜测接下来应该出现的token是什么。

模型训练

  • 在训练过程中,模型通过大量的文本数据来学习文本之间的模式和结构。
  • 例如,模型会看到成千上万次的“我爱X”这样的模式,其中X可以是各种不同的词。通过这样的训练,模型会学会哪些词最有可能出现在“我爱”之后。

要理解清楚这一训练过程,最主要的就是搞清楚预训练的数据怎么构造,数据怎么喂给模型,模型输出的是什么,以及如何计算loss

什么是token?

token是指文本中的一个词或者子词,给定一句文本,送入语言模型前首先要做的是对原始文本进行tokenize,也就是把一个文本序列拆分为离散的token序列

其中,tokenizer是在无标签的语料上训练得到的一个token数量固定且唯一的分词器,这里的token数量就是大家常说的词表,也就是语言模型知道的所有tokens。

当我们对文本进行分词后,每个token可以对应一个embedding,这也就是语言模型中的embedding层,获得某个token的embedding就类似一个查表的过程

我们知道文本序列是有顺序的,而常见的语言模型都是基于注意力机制的transformer结构,无法自动考虑文本的前后顺序,因此需要手动加上位置编码,也就是每个位置有一个位置embedding,然后和对应位置的token embedding进行相加

在模型训练或推理阶段大家经常会听到上下文长度这个词,它指的是模型训练时接收的token训练的最大长度,如果在训练阶段只学习了一个较短长度的位置embedding,那模型在推理阶段就不能够适用于较长文本(因为它没见过长文本的位置编码)

语言模型的预训练

当我们有了token embedding和位置embedding后,将它们送入一个decoder-only的transofrmer模型,它会在每个token的位置输出一个对应的embedding(可以理解为就像是做了个特征加工)

有了每个token的一个输出embedding后,我们就可以拿它来做next token prediction了,其实就是当作一个分类问题来看待

  • 首先我们把输出embedding送入一个线性层,输出的维度是词表的大小,就是让预测这个token的下一个token属于词表的“哪一类”
  • 为了将输出概率归一化,需要再进行一个softmax变换
  • 训练时就是最大化这个概率使得它能够预测真实的下一个token
  • 推理时就是从这个概率分布中采样下一个token

训练阶段:因为有causal自注意力的存在,我们可以一次性对一整个句子每个token进行下一个token的预测,并计算所有位置token的loss,因此只需要一forward

通过一个完整的例子来介绍一下这个过程,假设现在有一个用来预训练的数据集

你知道什么是预训练吗?

假设经过分词后

你: 9
知道: 3
什么: 6
是: 4
预训练: 2
吗: 1
?: 5

原来的数据变为如下序列,后面补了三个0(假设我们希望最大序列长度是10)

9 3 6 4 2 1 5 0 0 0

预测下一个token就类似于9预测3,9 3预测6,以此类推,但是如果这样拆成很多个数据段其实比较低效,因此就可以考虑移位来构造数据,即

  • 模型输入X为          9 3 6 4 2 1 5 0 0 0
  • 模型输出targets为  3 6 4 2 1 5 0 0 0 0

这样就可以一次性把整条序列喂给模型,计算一次就包含了6个预测下一个token的损失了。

注意这里模型的设计是有讲究的,我们不能让输入看到后面的词(如果看得到的话就没必要进行预测了),也就是“你”在模型内看不到“知道”,“你 知道”在模型内看不到“什么”,这个可以通过注意力机制实现,不是本文的关注点,这里就不展开了。

现在模型的输入的维度为(1,10),第一维为batch_size,然后经过embedding层后变为(1,10,768),这里假设embedding的维度为768。

记住进入transfomer前后数据的维度不会发生变化,把transfomer当作一个黑盒,也就是transformer(X)的维度还是(1,10,768),接下来就是基于它来进行预测了,因为要预测哪个词,词的可能情况就是词表的大小,所以做的就是一个分类任务,预测下一个token是词表中的哪一个(词表中的每一个词当作一个类别)。

为了完成分类任务,需要对transformer的输出做一个映射,映射到跟词表一样大,也就需要定义这样一个线性变换

output_layer = nn.Linear(768, vocab_size, bias=False)

然后logits=output_layer(transformer(X))的维度就是(1,10,vocab_size),接下来就可以计算loss了,具体来说就是计算logits(模型预测)与targets(真实标签)之间的交叉熵损失,同时忽略了填充值对应的损失。

语言模型的的Supervised fine-tuning (SFT)阶段

“有监督微调”意味着使用有标签的数据来调整一个已预训练好的语言模型(LLM),使其更适应某一特定任务。通常LLM的预训练是无监督的,但微调过程往往是有监督的。

当进行有监督微调时,模型权重会根据与真实标签的差异进行调整。通过这个微调过程,模型能够捕捉到标签数据中特定于某一任务的模式和特点。使得模型更加精确,更好地适应某一特定任务。

以一个简单的例子来说,你有一个已经预训练好的LLM。当输入“我不能登录我的账号,我该怎么办?”时,它可能简单地回答:“尝试使用‘忘记密码’功能来重置你的密码。”

这个回答很直接,适用于一般问题,但如果是客服场景,可能就不太合适了。一个好的客服回答应该更有同情心,并且可能不会这么直接,甚至可能包含联系信息或其他细节。这时候,有监督微调就显得非常重要了。

经过有监督微调后,你的模型可以提供更加符合特定指导原则的答案。例如,经过一系列专业的培训示例后,你的模型可以更有同情心地回答客服问题。

接下来我们还是从数据到模型输出,计算loss的步骤来看看SFT的实现原理。

首先还是来看看数据怎么构造,SFT的每一条样本一般由两部分组成,也就是prompt(instruction)+ answer,比如:

  • prompt: 翻译以下句子: What is pretrain
  • answer: 什么是预训练

也就是我们要给模型提供一些类似于问答形式的答案来学习,有了前面预训练的经验后,SFT其实就很好理解的,它本质上也在做next token prediction,只是我们更希望模型关注answer部分的预测,这可以通过生成一个mask向量来屏蔽不希望计算loss的部分,下面就是数据构造的一个示意:做的事情就是拼接prompt和answer,并在answer两侧添加一个开始和结束的符号,算一下prompt/instruction的长度,以及后面需要pad的长度,然后生成一个mask向量,answer部分为1,其他部分为0。

input_id=prompt+[bos]+answer+[eos]
context_length = input_id.index(bos)
mask_position = context_length - 1
pad_len = max_length - len(input_id)
input_id = input_id + [pad] * pad_len
loss_mask = [0]*context_length+[1]*(len(input_id[mask_position+1:])) + [0]*pad_len

构造好输入后,token转为embedding,经过transformer的过程跟之前预训练完全一样,也就是我们又得到了一个维度是(1,10,vocab_size)的输出logits=output_layer(transformer(X)),进一步就可以计算answer部分的loss了,其实就是通过mask把不希望考虑的地方乘以0,保留answer部分loss。

loss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0,reduce=False)
loss_mask = loss_mask.view(-1)
loss = torch.sum(loss*loss_mask)/loss_mask.sum()

有了loss,进行反向传播更新模型参数就OK啦。

Reference:Supervised Fine-tuning: customizing LLMs

语言模型的推理阶段

以自回归的方式进行预测

  • 每次预测下一个token
  • 将预测的token拼接到当前已经生成的句子上
  • 再基于拼接后的句子进行预测下一个token
  • 不断重复直到结束

其中,在预测下一个token时,每次我们都有一个概率分布用于采样,根据不同场景选择采样策略会略有不同,不然有贪婪策略、核采样、Top-k采样等,另外经常会看到Temperature这个概念,它是用来控制生成的随机性的,温度系数越小越稳定。

代码实现

下面代码来自项目https://github.com/karpathy/nanoGPT/tree/master,同样是一个很好的项目,推荐初学者可以看看。

对于各种基于Transformer的模型,它们都是由很多个Block堆起来的,每个Block主要有两个部分组成:

  • Multi-headed Causal Self-Attention
  • Feed-forward Neural Network

结构的示意图如下:

看图搭一下单个Block

然后看下一整个GPT的结构

主要就是两个embedding层(token、位置)、多个block、一些额外的dropout和LayerNorm层,以及最后用来预测下一个token的线性层。说破了就是这么简单。

这边还用到了weight tying的技巧,就是最后一层用来分类的线性层的权重和token embedding层的权重共享。

接下来重点来关注一下训练和推理的forward是如何进行的,这能帮助大家更好的理解原理。

首先需要构建token embedding和位置embedding,把它们叠加起来后过一个dropout,然后就可以送入transformer的block中了。

需要注意的是经过transforemr block后出来的tensor的维度跟之前是一样的。拿到每个token位置对应的输出embedding后,就可以通过最后的先行层进行分类,然后用交叉熵损失来进行优化。

再看一下完整的过程,其中只需要将输入左移一个位置就可以作为target了

接下来看推理阶段:

  • 根据当前输入序列进行一次前向传播
  • 利用温度系数对输出概率分布进行调整
  • 通过softmax进行归一化
  • 从概率分布进行采样下一个token
  • 拼接到当前句子并再进入下一轮循环

大模型基础|预训练|有监督微调SFT - 知乎 (zhihu.com)

从原理到代码理解语言模型训练和推理 - 知乎 (zhihu.com)

这篇关于[LLM] 大模型基础|预训练|有监督微调SFT | 推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/825421

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者