计算机设计大赛 题目:基于机器视觉的图像矫正 (以车牌识别为例) - 图像畸变校正

本文主要是介绍计算机设计大赛 题目:基于机器视觉的图像矫正 (以车牌识别为例) - 图像畸变校正,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0 简介
  • 1 思路简介
    • 1.1 车牌定位
    • 1.2 畸变校正
  • 2 代码实现
    • 2.1 车牌定位
      • 2.1.1 通过颜色特征选定可疑区域
      • 2.1.2 寻找车牌外围轮廓
      • 2.1.3 车牌区域定位
    • 2.2 畸变校正
      • 2.2.1 畸变后车牌顶点定位
      • 2.2.2 校正
  • 7 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于机器视觉的图像矫正 (以车牌识别为例)

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 思路简介

目前车牌识别系统在各小区门口随处可见,识别效果貌似都还可以。查阅资料后,发现整个过程又可以细化为车牌定位、畸变校正、车牌分割和内容识别四部分。本篇随笔主要介绍车牌定位及畸变校正两部分,在python环境下通过opencv实现。

1.1 车牌定位

目前主流的车牌定位方法从大的方面来说可以分为两类:一种是基于车牌的背景颜色特征;另一种基于车牌的轮廓形状特征。基于颜色特征的又可分为两类:一种在RGB空间识别,另一种在HSV空间识别。经测试后发现,单独使用任何一种方法,效果均不太理想。目前比较普遍的做法是几种定位方法同时使用,或用一种识别,另一种验证。本文主要通过颜色特征对车牌进行定位,以HSV空间的H分量为主,以RGB空间的R分量和B分量为辅,后续再用车牌的长宽比例排除干扰。

1.2 畸变校正

在车牌的图像采集过程中,相机镜头通常都不是垂直于车牌的,所以待识别图像中车牌或多或少都会有一定程度的畸变,这给后续的车牌内容识别带来了一定的困难。因此需要对车牌进行畸变校正,消除畸变带来的不利影响。

2 代码实现

2.1 车牌定位

2.1.1 通过颜色特征选定可疑区域

取了不同光照环境下车牌的图像,截取其背景颜色,利用opencv进行通道分离和颜色空间转换,经试验后,总结出车牌背景色的以下特征:

  • (1)在HSV空间下,H分量的值通常都在115附近徘徊,S分量和V分量因光照不同而差异较大(opencv中H分量的取值范围是0到179,而不是图像学中的0到360;S分量和V分量的取值范围是到255);

  • (2)在RGB空间下,R分量通常较小,一般在30以下,B分量通常较大,一般在80以上,G分量波动较大;

  • (3)在HSV空间下对图像进行补光和加饱和度处理,即将图像的S分量和V分量均置为255,再进行色彩空间转换,由HSV空间转换为RGB空间,发现R分量全部变为0,B分量全部变为255(此操作会引入较大的干扰,后续没有使用)。

根据以上特征可初步筛选出可疑的车牌区域。随后对灰度图进行操作,将可疑位置的像素值置为255,其他位置的像素值置为0,即根据特征对图像进行了二值化。二值化图像中,可疑区域用白色表示,其他区域均为黑色。随后可通过膨胀腐蚀等操作对图像进一步处理。

for i in range(img_h):for j in range(img_w):# 普通蓝色车牌,同时排除透明反光物质的干扰if ((img_HSV[:, :, 0][i, j]-115)**2 < 15**2) and (img_B[i, j] > 70) and (img_R[i, j] < 40):img_gray[i, j] = 255else:img_gray[i, j] = 0

在这里插入图片描述

2.1.2 寻找车牌外围轮廓

选定可疑区域并将图像二值化后,一般情况下,图像中就只有车牌位置的像素颜色为白,但在一些特殊情况下还会存在一些噪声。如上图所示,由于图像右上角存在蓝色支架,与车牌颜色特征相符,因此也被当做车牌识别了出来,由此引入了噪声。

经过观察可以发现,车牌区域与噪声之间存在较大的差异,且车牌区域特征比较明显:

  • (1)根据我国常规车牌的形状可知,车牌的形状为扁平矩形,长宽比约为3:1;

  • (2)车牌区域面积远大于噪声区域,一般为图像中最大的白色区域。

在这里插入图片描述

可以通过cv2.findContours()函数寻找二值化后图像中白色区域的轮廓。

注意:在opencv2和opencv4中,cv2.findContours()的返回值有两个,而在opencv3中,返回值有3个。视opencv版本不同,代码的写法也会存在一定的差异。

# 检测所有外轮廓,只留矩形的四个顶点
# opencv4.0, opencv2.x
contours, _ = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# opencv3.x
_, contours, _ = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

这里,因为二值化图像中共有三块白色区域(车牌及两处噪声),因此返回值contours为长度为3的list。list内装有3个array,每个array内各存放着一块白色区域的轮廓信息。每个array的shape均为(n,
1, 2),即每个array存放着对应白色区域轮廓上n个点的坐标。

目前得到了3个array,即3组轮廓信息,但我们并不清楚其中哪个是车牌区域对应的那一组轮廓信息。此时可以根据车牌的上述特征筛选出车牌区域的轮廓。

#形状及大小筛选校验
det_x_max = 0
det_y_max = 0
num = 0
for i in range(len(contours)):x_min = np.min(contours[i][ :, :, 0])x_max = np.max(contours[i][ :, :, 0])y_min = np.min(contours[i][ :, :, 1])y_max = np.max(contours[i][ :, :, 1])det_x = x_max - x_mindet_y = y_max - y_minif (det_x / det_y > 1.8) and (det_x > det_x_max ) and (det_y > det_y_max ):det_y_max = det_ydet_x_max = det_xnum = i
# 获取最可疑区域轮廓点集
points = np.array(contours[num][:, 0])

最终得到的points的shape为(n, 2),即存放了n个点的坐标,这n个点均分布在车牌的边缘上

2.1.3 车牌区域定位

获取车牌轮廓上的点集后,可用cv2.minAreaRect()获取点集的最小外接矩形。返回值rect内包含该矩形的中心点坐标、高度宽度及倾斜角度等信息,使用cv2.boxPoints()可获取该矩形的四个顶点坐标。

# 获取最小外接矩阵,中心点坐标,宽高,旋转角度
rect = cv2.minAreaRect(points)
# 获取矩形四个顶点,浮点型
box = cv2.boxPoints(rect)
# 取整
box = np.int0(box)

但我们并不清楚这四个坐标点各对应着矩形的哪一个顶点,因此无法充分地利用这些坐标信息。

可以从坐标值的大小特征入手,将四个坐标与矩形的四个顶点匹配起来:在opencv的坐标体系下,纵坐标最小的是top_point,纵坐标最大的是bottom_point,
横坐标最小的是left_point,横坐标最大的是right_point。

# 获取四个顶点坐标
left_point_x = np.min(box[:, 0])
right_point_x = np.max(box[:, 0])
top_point_y = np.min(box[:, 1])
bottom_point_y = np.max(box[:, 1])left_point_y = box[:, 1][np.where(box[:, 0] == left_point_x)][0]
right_point_y = box[:, 1][np.where(box[:, 0] == right_point_x)][0]
top_point_x = box[:, 0][np.where(box[:, 1] == top_point_y)][0]
bottom_point_x = box[:, 0][np.where(box[:, 1] == bottom_point_y)][0]
# 上下左右四个点坐标
vertices = np.array([[top_point_x, top_point_y], [bottom_point_x, bottom_point_y], [left_point_x, left_point_y], [right_point_x, right_point_y]])

在这里插入图片描述
在这里插入图片描述

2.2 畸变校正

2.2.1 畸变后车牌顶点定位

要想实现车牌的畸变矫正,必须找到畸变前后对应点的位置关系。

可以看出,本是矩形的车牌畸变后变成了平行四边形,因此车牌轮廓和得出来的矩形轮廓并不契合。但有了矩形的四个顶点坐标后,可以通过简单的几何相似关系求出平行四边形车牌的四个顶点坐标。

在本例中,平行四边形四个顶点与矩形四个顶点之间有如下关系:矩形顶点Top_Point、Bottom_Point与平行四边形顶点new_top_point、new_bottom_point重合,矩形顶点Top_Point的横坐标与平行四边形顶点new_right_point的横坐标相同,矩形顶点Bottom_Point的横坐标与平行四边形顶点new_left_point的横坐标相同。

在这里插入图片描述

但事实上,由于拍摄的角度不同,可能出现两种不同的畸变情况。可以根据矩形倾斜角度的不同来判断具体是哪种畸变情况。

在这里插入图片描述

判断出具体的畸变情况后,选用对应的几何相似关系,即可轻易地求出平行四边形四个顶点坐标,即得到了畸变后车牌四个顶点的坐标。

要想实现车牌的校正,还需得到畸变前车牌四个顶点的坐标。因为我国车牌的标准尺寸为440X140,因此可规定畸变前车牌的四个顶点坐标分别为:(0,0),(440,0),(0,140),(440,140)。顺序上需与畸变后的四个顶点坐标相对应。

# 畸变情况1
if rect[2] > -45:new_right_point_x = vertices[0, 0]new_right_point_y = int(vertices[1, 1] - (vertices[0, 0]- vertices[1, 0]) / (vertices[3, 0] - vertices[1, 0]) * (vertices[1, 1] - vertices[3, 1]))new_left_point_x = vertices[1, 0]new_left_point_y = int(vertices[0, 1] + (vertices[0, 0] - vertices[1, 0]) / (vertices[0, 0] - vertices[2, 0]) * (vertices[2, 1] - vertices[0, 1]))# 校正后的四个顶点坐标point_set_1 = np.float32([[440, 0],[0, 0],[0, 140],[440, 140]])
# 畸变情况2
elif rect[2] < -45:new_right_point_x = vertices[1, 0]new_right_point_y = int(vertices[0, 1] + (vertices[1, 0] - vertices[0, 0]) / (vertices[3, 0] - vertices[0, 0]) * (vertices[3, 1] - vertices[0, 1]))new_left_point_x = vertices[0, 0]new_left_point_y = int(vertices[1, 1] - (vertices[1, 0] - vertices[0, 0]) / (vertices[1, 0] - vertices[2, 0]) * (vertices[1, 1] - vertices[2, 1]))# 校正后的四个顶点坐标point_set_1 = np.float32([[0, 0],[0, 140],[440, 140],[440, 0]])# 校正前平行四边形四个顶点坐标
new_box = np.array([(vertices[0, 0], vertices[0, 1]), (new_left_point_x, new_left_point_y), (vertices[1, 0], vertices[1, 1]), (new_right_point_x, new_right_point_y)])
point_set_0 = np.float32(new_box)

2.2.2 校正

该畸变是由于摄像头与车牌不垂直而引起的投影造成的,因此可用cv2.warpPerspective()来进行校正。

# 变换矩阵
mat = cv2.getPerspectiveTransform(point_set_0, point_set_1)
# 投影变换
lic = cv2.warpPerspective(img, mat, (440, 140))

在这里插入图片描述

import cv2import numpy as np# 预处理def imgProcess(path):img = cv2.imread(path)# 统一规定大小img = cv2.resize(img, (640,480))# 高斯模糊img_Gas = cv2.GaussianBlur(img,(5,5),0)# RGB通道分离img_B = cv2.split(img_Gas)[0]img_G = cv2.split(img_Gas)[1]img_R = cv2.split(img_Gas)[2]# 读取灰度图和HSV空间图img_gray = cv2.cvtColor(img_Gas, cv2.COLOR_BGR2GRAY)img_HSV = cv2.cvtColor(img_Gas, cv2.COLOR_BGR2HSV)return img, img_Gas, img_B, img_G, img_R, img_gray, img_HSV# 初步识别def preIdentification(img_gray, img_HSV, img_B, img_R):for i in range(480):for j in range(640):# 普通蓝色车牌,同时排除透明反光物质的干扰if ((img_HSV[:, :, 0][i, j]-115)**2 < 15**2) and (img_B[i, j] > 70) and (img_R[i, j] < 40):img_gray[i, j] = 255else:img_gray[i, j] = 0# 定义核kernel_small = np.ones((3, 3))kernel_big = np.ones((7, 7))img_gray = cv2.GaussianBlur(img_gray, (5, 5), 0) # 高斯平滑img_di = cv2.dilate(img_gray, kernel_small, iterations=5) # 腐蚀5次img_close = cv2.morphologyEx(img_di, cv2.MORPH_CLOSE, kernel_big) # 闭操作img_close = cv2.GaussianBlur(img_close, (5, 5), 0) # 高斯平滑_, img_bin = cv2.threshold(img_close, 100, 255, cv2.THRESH_BINARY) # 二值化return img_bin# 定位def fixPosition(img, img_bin):# 检测所有外轮廓,只留矩形的四个顶点contours, _ = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)#形状及大小筛选校验det_x_max = 0det_y_max = 0num = 0for i in range(len(contours)):x_min = np.min(contours[i][ :, :, 0])x_max = np.max(contours[i][ :, :, 0])y_min = np.min(contours[i][ :, :, 1])y_max = np.max(contours[i][ :, :, 1])det_x = x_max - x_mindet_y = y_max - y_minif (det_x / det_y > 1.8) and (det_x > det_x_max ) and (det_y > det_y_max ):det_y_max = det_ydet_x_max = det_xnum = i# 获取最可疑区域轮廓点集points = np.array(contours[num][:, 0])return points#img_lic_canny = cv2.Canny(img_lic_bin, 100, 200)def findVertices(points):# 获取最小外接矩阵,中心点坐标,宽高,旋转角度rect = cv2.minAreaRect(points)# 获取矩形四个顶点,浮点型box = cv2.boxPoints(rect)# 取整box = np.int0(box)# 获取四个顶点坐标left_point_x = np.min(box[:, 0])right_point_x = np.max(box[:, 0])top_point_y = np.min(box[:, 1])bottom_point_y = np.max(box[:, 1])left_point_y = box[:, 1][np.where(box[:, 0] == left_point_x)][0]right_point_y = box[:, 1][np.where(box[:, 0] == right_point_x)][0]top_point_x = box[:, 0][np.where(box[:, 1] == top_point_y)][0]bottom_point_x = box[:, 0][np.where(box[:, 1] == bottom_point_y)][0]# 上下左右四个点坐标vertices = np.array([[top_point_x, top_point_y], [bottom_point_x, bottom_point_y], [left_point_x, left_point_y], [right_point_x, right_point_y]])return vertices, rectdef tiltCorrection(vertices, rect):# 畸变情况1if rect[2] > -45:new_right_point_x = vertices[0, 0]new_right_point_y = int(vertices[1, 1] - (vertices[0, 0]- vertices[1, 0]) / (vertices[3, 0] - vertices[1, 0]) * (vertices[1, 1] - vertices[3, 1]))new_left_point_x = vertices[1, 0]new_left_point_y = int(vertices[0, 1] + (vertices[0, 0] - vertices[1, 0]) / (vertices[0, 0] - vertices[2, 0]) * (vertices[2, 1] - vertices[0, 1]))# 校正后的四个顶点坐标point_set_1 = np.float32([[440, 0],[0, 0],[0, 140],[440, 140]])# 畸变情况2elif rect[2] < -45:new_right_point_x = vertices[1, 0]new_right_point_y = int(vertices[0, 1] + (vertices[1, 0] - vertices[0, 0]) / (vertices[3, 0] - vertices[0, 0]) * (vertices[3, 1] - vertices[0, 1]))new_left_point_x = vertices[0, 0]new_left_point_y = int(vertices[1, 1] - (vertices[1, 0] - vertices[0, 0]) / (vertices[1, 0] - vertices[2, 0]) * (vertices[1, 1] - vertices[2, 1]))# 校正后的四个顶点坐标point_set_1 = np.float32([[0, 0],[0, 140],[440, 140],[440, 0]])# 校正前平行四边形四个顶点坐标new_box = np.array([(vertices[0, 0], vertices[0, 1]), (new_left_point_x, new_left_point_y), (vertices[1, 0], vertices[1, 1]), (new_right_point_x, new_right_point_y)])point_set_0 = np.float32(new_box)return point_set_0, point_set_1, new_boxdef transform(img, point_set_0, point_set_1):# 变换矩阵mat = cv2.getPerspectiveTransform(point_set_0, point_set_1)# 投影变换lic = cv2.warpPerspective(img, mat, (440, 140))return licdef main():path = 'F:\\Python\\license_plate\\test\\9.jpg'# 图像预处理img, img_Gas, img_B, img_G, img_R, img_gray, img_HSV = imgProcess(path)# 初步识别img_bin  = preIdentification(img_gray, img_HSV, img_B, img_R)points = fixPosition(img, img_bin)vertices, rect = findVertices(points)point_set_0, point_set_1, new_box = tiltCorrection(vertices, rect)img_draw = cv2.drawContours(img.copy(), [new_box], -1, (0,0,255), 3)lic = transform(img, point_set_0, point_set_1)# 原图上框出车牌cv2.namedWindow("Image")cv2.imshow("Image", img_draw)# 二值化图像cv2.namedWindow("Image_Bin")cv2.imshow("Image_Bin", img_bin)# 显示校正后的车牌cv2.namedWindow("Lic")cv2.imshow("Lic", lic)# 暂停、关闭窗口cv2.waitKey(0)cv2.destroyAllWindows()if __name__ == '__main__':main()

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

这篇关于计算机设计大赛 题目:基于机器视觉的图像矫正 (以车牌识别为例) - 图像畸变校正的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819576

相关文章

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

怎么让1台电脑共享给7人同时流畅设计

在当今的创意设计与数字内容生产领域,图形工作站以其强大的计算能力、专业的图形处理能力和稳定的系统性能,成为了众多设计师、动画师、视频编辑师等创意工作者的必备工具。 设计团队面临资源有限,比如只有一台高性能电脑时,如何高效地让七人同时流畅地进行设计工作,便成为了一个亟待解决的问题。 一、硬件升级与配置 1.高性能处理器(CPU):选择多核、高线程的处理器,例如Intel的至强系列或AMD的Ry

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机