本文主要是介绍差分算法优化径向基神经网络回归分析,DE-RBF多输入单输出回归分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
RBF的详细原理
RBF的定义
RBF理论
易错及常见问题
差分进化算法原理
差分算法主要参数
差分算法流程图
差分算法优化测试函数代码
完整代码包含数据下载链接: (代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/88899639
数据
matlab编程实现
效果图
结果分析
展望
摘要
心理状况评估,差分遗传进化算法,差分进化算法改进的BP神经网络。
RBF的详细原理
RBF的定义
径向基函数(Radical Basis Function,RBF)方法是Powell在1985年提出的。所谓径向基函数,其实就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心c之间欧氏距离的单调函数,可记作k(||x-c||),其作用往往是局部的,即当x远离c时函数取值很小。例如高斯径向基函数:
RBF理论
RBF神经网络算法是由三层结构组成,输入层至隐层为非线性的空间变换,一般选用径向基函数的高斯函数进行运算;从隐层至输出层为线性空间变换,即矩阵与矩阵之间的变换。
rbf神经网络原理是用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。
RBF是一种前馈型的神经网络,也就是说他不是通过不停的调整权值来逼近最小误差的,的激励函数是一般是高斯函数和BP的S型函数不一样,高斯函数是通过对输入与函数中心点的距离来算权重的。
简而言之,RBF神经网络其实就是,具有不同激活函数和应用方向的前馈网络。
差分进化算法
基本定义
差分进化算法(Differential Evolution Algorithm,DE)是一种高效的全局优化算法。它也是基于群体的启发式搜索算法,群中的每个个体对应一个解向量。差分进化算法的进化流程则与遗传算法非常类似,都包括变异、杂交和选择操作,但这些操作的具体定义与遗传算法有所不同
编码及基本操作
DE算法通过采用浮点矢量进行编码生成种群个体。在DE算法寻优的过程中,首先,从父代个体间选择两个个体进行向量做差生成差分矢量;其次,选择另外一个个体与差分矢量求和生成实验个体;然后,对父代个体与相应的实验个体进行交叉操作,生成新的子代个体;最后在父代个体和子代个体之间进行选择操作,将符合要求的个体保存到下一代群体中去
DE算法主要的控制参数包括:种群规模(NP)、缩放因子(F)和交叉概率(CR)。
NP主要反映算法中种群信息量的大小,NP值越大种群信息包含的越
这篇关于差分算法优化径向基神经网络回归分析,DE-RBF多输入单输出回归分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!