15 实战:Kaggle房价预测 + 课程竞赛:加州2020年房价预测【李沐动手学深度学习课程笔记】

本文主要是介绍15 实战:Kaggle房价预测 + 课程竞赛:加州2020年房价预测【李沐动手学深度学习课程笔记】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

15 实战:Kaggle房价预测 + 课程竞赛:加州2020年房价预测【李沐动手学深度学习课程笔记】icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/685343754

            写在前面:这里格式很乱,代码直接去知乎copy

1 实战Kaggle比赛:预测房价

1.1 实现几个函数来下载数据

import hashlib import os import tarfile import zipfile import requests #@save DATA_HUB = dict() DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/' def download(name, cache_dir=os.path.join('..', 'data')): #@save """下载一个DATA_HUB中的文件,返回本地文件名""" assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}" url, sha1_hash = DATA_HUB[name] os.makedirs(cache_dir, exist_ok=True) fname = os.path.join(cache_dir, url.split('/')[-1]) if os.path.exists(fname): sha1 = hashlib.sha1() with open(fname, 'rb') as f: while True: data = f.read(1048576) if not data: break sha1.update(data) if sha1.hexdigest() == sha1_hash: return fname # 命中缓存 print(f'正在从{url}下载{fname}...') r = requests.get(url, stream=True, verify=True) with open(fname, 'wb') as f: f.write(r.content) return fname

1.2 使用pandas读入并处理数据

# 如果没有安装pandas,请取消下一行的注释 # !pip install pandas %matplotlib inline import numpy as np import pandas as pd import torch from torch import nn from d2l import torch as d2l DATA_HUB['kaggle_house_train'] = ( #@save DATA_URL + 'kaggle_house_pred_train.csv', '585e9cc93e70b39160e7921475f9bcd7d31219ce') DATA_HUB['kaggle_house_test'] = ( #@save DATA_URL + 'kaggle_house_pred_test.csv', 'fa19780a7b011d9b009e8bff8e99922a8ee2eb90') train_data = pd.read_csv(download('kaggle_house_train')) test_data = pd.read_csv(download('kaggle_house_test')) print(train_data.shape) print(test_data.shape) print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]]) all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

1.3 数据预处理

# 若无法获得测试数据,则可根据训练数据计算均值和标准差 numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index all_features[numeric_features] = all_features[numeric_features].apply( lambda x: (x - x.mean()) / (x.std())) # 在标准化数据之后,所有均值消失,因此我们可以将缺失值设置为0 all_features[numeric_features] = all_features[numeric_features].fillna(0) # “Dummy_na=True”将“na”(缺失值)视为有效的特征值,并为其创建指示符特征 all_features = pd.get_dummies(all_features, dummy_na=True) all_features.shape n_train = train_data.shape[0] train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32) test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32) train_labels = torch.tensor( train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)

1.4 训练

首先,我们训练一个带有损失平方的线性模型。 显然线性模型很难让我们在竞赛中获胜,但线性模型提供了一种健全性检查, 以查看数据中是否存在有意义的信息。 如果我们在这里不能做得比随机猜测更好,那么我们很可能存在数据处理错误。 如果一切顺利,线性模型将作为基线(baseline)模型, 让我们直观地知道最好的模型有超出简单的模型多少。

 

loss = nn.MSELoss() in_features = train_features.shape[1] def get_net(): net = nn.Sequential(nn.Linear(in_features,1)) return net def log_rmse(net, features, labels): # 为了在取对数时进一步稳定该值,将小于1的值设置为1 clipped_preds = torch.clamp(net(features), 1, float('inf')) rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels))) return rmse.item() def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] train_iter = d2l.load_array((train_features, train_labels), batch_size) # 这里使用的是Adam优化算法 optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate, weight_decay = weight_decay) for epoch in range(num_epochs): for X, y in train_iter: optimizer.zero_grad() l = loss(net(X), y) l.backward() optimizer.step() train_ls.append(log_rmse(net, train_features, train_labels)) if test_labels is not None: test_ls.append(log_rmse(net, test_features, test_labels)) return train_ls, test_ls

1.5 K折交叉验证

我们首先需要定义一个函数,在K折交叉验证过程中返回第i折的数据。 具体地说,它选择第i个切片作为验证数据,其余部分作为训练数据。 注意,这并不是处理数据的最有效方法,如果我们的数据集大得多,会有其他解决办法。

def get_k_fold_data(k, i, X, y): assert k > 1 fold_size = X.shape[0] // k X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) X_part, y_part = X[idx, :], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = torch.cat([X_train, X_part], 0) y_train = torch.cat([y_train, y_part], 0) return X_train, y_train, X_valid, y_valid def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size): train_l_sum, valid_l_sum = 0, 0 for i in range(k): data = get_k_fold_data(k, i, X_train, y_train) net = get_net() train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size) train_l_sum += train_ls[-1] valid_l_sum += valid_ls[-1] if i == 0: d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls], xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs], legend=['train', 'valid'], yscale='log') print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, ' f'验证log rmse{float(valid_ls[-1]):f}') return train_l_sum / k, valid_l_sum / k

1.6 模型选择

k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64 train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size) print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, ' f'平均验证log rmse: {float(valid_l):f}')

1.7 提交Kgaale预测

def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size): net = get_net() train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size) d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log') print(f'训练log rmse:{float(train_ls[-1]):f}') # 将网络应用于测试集。 preds = net(test_features).detach().numpy() # 将其重新格式化以导出到Kaggle test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0]) submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1) submission.to_csv('submission.csv', index=False) train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)

2. 小结

这篇关于15 实战:Kaggle房价预测 + 课程竞赛:加州2020年房价预测【李沐动手学深度学习课程笔记】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782240

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2