【YOLO v5 v7 v8 小目标改进】ODConv:在卷积核所有维度(数量、空间、输入、输出)上应用注意力机制来优化传统动态卷积

本文主要是介绍【YOLO v5 v7 v8 小目标改进】ODConv:在卷积核所有维度(数量、空间、输入、输出)上应用注意力机制来优化传统动态卷积,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ODConv:在卷积核所有维度(数量、空间、输入、输出)上应用注意力机制来优化传统的动态卷积

    • 提出背景
      • 传统动态卷积
      • 全维动态卷积
      • 效果
    • 小目标涨点
      • YOLO v5 魔改
      • YOLO v7 魔改
      • YOLO v8 魔改

 


论文:https://openreview.net/pdf?id=DmpCfq6Mg39

代码:https://github.com/OSVAI/ODConv

 

提出背景

在过去的十年里,我们见证了深度卷积神经网络(CNN)在许多计算机视觉应用中的巨大成功。

构建深度CNN的最常见方法是堆叠多个卷积层以及其他基本层,并预先定义特征连接拓扑。

通过手工工程和自动搜索对CNN架构设计的巨大进步,许多流行的分类骨架已经被提出。

最近的工作表明,将注意力机制融入卷积块可以进一步提高现代CNN的性能。

问题1:提高CNN性能

  • 解法:引入注意力机制。
  • 之所以使用这个解法,是因为注意力机制可以加强CNN通过鼓励有用的特征通道同时抑制不重要的特征通道,从而提高表示能力。

问题2:动态卷积的设计限制

  • 子解法1:多维度注意力机制(ODConv)
    • 之所以使用ODConv,是因为现有的动态卷积方法只关注卷积核数量的一个维度,而忽略了卷积核空间的其他三个维度(空间大小、输入通道数和输出通道数),限制了捕获丰富上下文线索的能力。
  • 子解法2:减少模型大小
    • 之所以使用这个子解法,是因为传统的动态卷积在替换常规卷积时会增加n倍的卷积参数,导致模型大小大幅增加。通过动态卷积分解方法,可以获得更紧凑且竞争力的模型。

传统动态卷积

在这里插入图片描述
上图是 DyConv(a 传统的动态卷积)和ODConv(b 本文的全维动态卷积)的结构图比较。

在DyConv中,使用全局平均池化(GAP)、全连接层(FC)和Sigmoid激活函数来计算单个注意力标量 α w i αw_i αwi,这个标量用于加权卷积核 W i W_i Wi

相比之下,ODConv采用了更复杂的多维度注意力机制来计算四种类型的注意力( α s i , α c i , α f i , 和 α w i αs_i, αc_i, αf_i, 和 αw_i αsi,αci,αfi,αwi),这些注意力分别对应于卷积核空间的不同维度。

四个不同的注意力通过四个分支生成,并通过Sigmoid或Softmax函数进行归一化。

这些注意力分别沿着卷积核空间的空间维度、输入通道维度、输出通道维度和卷积核数量维度被计算出来,并且以并行的方式应用于卷积核。

 

全维动态卷积

ODConv通过在任何卷积层利用新颖的多维度注意力机制来学习卷积核空间所有四个维度上的四种注意力,这些注意力相互补充,逐步应用它们可以显著增强CNN的基本卷积操作的特征提取能力。

让我们以ODConv在任何卷积层利用新颖的多维度注意力机制来学习卷积核空间所有四个维度上的四种注意力为例,举一个具体的应用场景来说明这种方法的有效性。

ODConv解法

  • 子特征1:空间尺寸注意力。ODConv学习不同空间尺寸的卷积核的重要性,从而能够更好地捕捉图像的局部和全局特征。之所以使用空间尺寸注意力,是因为不同大小的特征图对于捕获图像中的不同尺度信息至关重要。

  • 子特征2:输入通道注意力。通过调整对不同输入通道的关注程度,ODConv可以更有效地整合来自不同特征通道的信息。之所以使用输入通道注意力,是因为不同的特征通道可能包含不同的信息,对最终的识别任务有不同的贡献。

  • 子特征3:输出通道注意力。ODConv通过学习对输出通道的不同关注,优化了特征的表示。之所以使用输出通道注意力,是为了强化模型的能力,以区分和识别图像数据集中的细粒度类别。

  • 子特征4:卷积核数量注意力。通过动态调整不同卷积核的权重,ODConv能够根据输入图像的特征自适应地选择最适合的卷积核组合。之所以使用卷积核数量注意力,是因为它允许模型根据输入特征的复杂度动态调整其表示能力,从而在保持效率的同时提高准确性。

在这里插入图片描述
(a) αs_i:空间维度注意力,它将不同的权重分配给卷积核的每个空间位置。

(b) αc_i:输入通道维度注意力,它将不同的权重分配给卷积核的每个输入通道。

© αf_i:输出通道维度注意力,它将不同的权重分配给卷积核的每个输出滤波器。

(d) αw_i:卷积核维度注意力,它将一个整体的权重分配给整个卷积核集合。

因此,即使是使用单个卷积核的ODConv也能与现有的具有多个卷积核的动态卷积对手竞争或胜出,大大减少了额外的参数。

ODConv可以作为一种插入式设计用于替代许多CNN架构中的常规卷积,与现有的动态卷积设计相比,它在模型准确性和效率之间取得了更好的平衡。

 

在传统的CNN中,每个卷积层都使用固定的卷积核来处理输入的图像或特征图,这意味着无论输入数据如何,都会应用相同的卷积核。

然而,这种方法并不总是最优的,因为不同的输入图像可能需要不同的特征提取方式来更好地识别物体。

ODConv通过引入一种新颖的多维度注意力机制来解决这个问题。

具体来说,它在任何给定的卷积层中,不仅仅学习一个卷积核,而是学习一组卷积核,每个卷积核都针对卷积核空间的一个特定维度(如卷积核的空间尺寸、输入通道数、输出通道数和卷积核数量)。

然后,它使用输入特征动态地决定这些卷积核的注意力权重,使得网络能够根据输入图像的不同特征自适应地调整其卷积操作。

例如,如果输入图像是一只猫,ODConv可能会赋予识别猫特征(如毛发纹理或尾巴形状)更有用的卷积核更高的注意力权重。

相反,如果输入图像是一只鸟,它可能会增加那些能够捕捉到鸟的特征(如羽毛或翅膀形状)的卷积核的权重。

通过这种方式,ODConv能够为每个输入图像动态地优化其卷积操作,从而在不同的图像分类任务中实现更高的准确性,同时减少了需要的额外参数数量,因为它甚至可以使用单个卷积核与现有的多卷积核动态卷积方法竞争或超越它们的性能。

效果

ODConv的核心原理是引入一种全新的多维度注意力机制,这种机制不仅考虑卷积核的数量维度(如传统的动态卷积所做的),而且还同时考虑卷积核的空间维度、输入通道维度和输出通道维度。

这种方法允许网络根据输入数据的具体特点,在多个层面上动态调整其卷积核的权重,从而提高特征提取的能力。

ODConv通过在所有卷积核维度上应用注意力机制来优化传统的动态卷积,这样做可以提供更精细的特征处理能力,并提高模型对输入数据变化的适应性和敏感性。

这种细粒度的动态调整使得ODConv能够在增加很少或没有额外计算成本的情况下,提高模型的准确性和效率。

通过在轻量级CNN模型中应用ODConv,我们可以显著提高模型对图像的识别准确率,而不会带来太多的额外计算成本。

例如,将ODConv集成到MobileNetV2中,可能会在ImageNet测试集上获得比原始模型更高的分类准确率,同时保持模型的轻量级特性。

这种方法通过综合考虑卷积核的所有维度上的注意力,有效地增强了特征的表达力,解决了轻量级CNN在复杂任务上性能不足的问题。

小目标涨点

更新中…

YOLO v5 魔改

YOLO v7 魔改

YOLO v8 魔改

这篇关于【YOLO v5 v7 v8 小目标改进】ODConv:在卷积核所有维度(数量、空间、输入、输出)上应用注意力机制来优化传统动态卷积的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/764662

相关文章

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

Java导出Excel动态表头的示例详解

《Java导出Excel动态表头的示例详解》这篇文章主要为大家详细介绍了Java导出Excel动态表头的相关知识,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录前言一、效果展示二、代码实现1.固定头实体类2.动态头实现3.导出动态头前言本文只记录大致思路以及做法,代码不进

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例