2020-Point attention network for semantic segmentation of 3D point clouds

2024-02-28 15:32

本文主要是介绍2020-Point attention network for semantic segmentation of 3D point clouds,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Point attention network for semantic segmentation of 3D point clouds

Mingtao Fenga, Liang Zhangb, Xuefei Linc, Syed Zulqarnain Gilanid and Ajmal Miand*

年份:2020

期刊:Pattern Recognition

IF:7.196

1、创新

1)通过attention机制实现LAE-Convs 学习丰富的局部信息

2)point-wise spatial attention module学习点之间的上下文信息(全局信息)

这两种方式都是pointnet2缺少的,

1、pointnet2中的局部信息是通过简化版的pointnet实现的,最终聚合方式是采用的max函数,该方法对中心点周围的Kg个邻域点的权重在任意一个特征维度上都是[0,…1,…0]类似的排布。只采用最大的特征,而丢弃了其余的特征。

2、pointnet2没有对S个中心点的局部特征学习他们之间的关系,这对于同一个物体之间的信息没有办法相互加强。

2、具体实现

1)对于LAE-Convs(Local Attention-Edge Convolution)模块,不同于kNN和ballquery的邻域检索方式,采用了

multi-directional search method,在每一个方向内选取一个最近点,如果没有,就重复中心点。

image-20210104185453715

选取完邻域点之后,构建局部坐标系(平移邻域点),然后对每一个邻域点计算一个edge-weight,将16个邻域点的特征(聚合)加权求和到中心点上。

image-20210104185732196

对聚合后的中心点再使用一次MLP,得到一个的local feature

image-20210104190006268

最后在对该local feature进行MLP,得到最终的lcoal feature

该部分的算法如下:

image-20210104190042968

2)对于LAE-Convs输出的特征,都是local feature,这个local feature 很容易被距离所影响,为了加强同一个label的点集之间的关联度,为了获得他们这些local pointcloud的感受野之间的信息,也就是global信息,作者提出了一种point-wise spatial attention module以获取长距离之间的信息,使得feature不再受距离的影响。

流程如下,可以看到这是一个标准的attention模型,前两个代表Q、K,第三个代表V,通过计算Q和K之间的相识度,来更新V的值。

image-20210104191043005

相识度计算:

image-20210104191300934

最终的特征计算:

image-20210104191408087

3)网络结构:

还是经典的encoder-decoder模型

image-20210104191446286

3、实验结果

1、Scan Net

image-20210104192649123

image-20210104192707696

  • 消融实验

image-20210104192735716

image-20210104192800487

2、S3DIS

image-20210104192903720

3、ShapeNet

image-20210104192912360

3、ShapeNet

image-20210104192912360

这篇关于2020-Point attention network for semantic segmentation of 3D point clouds的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755891

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

什么是 Flash Attention

Flash Attention 是 由 Tri Dao 和 Dan Fu 等人在2022年的论文 FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness 中 提出的, 论文可以从 https://arxiv.org/abs/2205.14135 页面下载,点击 View PDF 就可以下载。 下面我

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

时间序列|change point detection

change point detection 被称为变点检测,其基本定义是在一个序列或过程中,当某个统计特性(分布类型、分布参数)在某时间点受系统性因素而非偶然因素影响发生变化,我们就称该时间点为变点。变点识别即利用统计量或统计方法或机器学习方法将该变点位置估计出来。 Change Point Detection的类型 online 指连续观察某一随机过程,监测到变点时停止检验,不运用到

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04

模具要不要建设3D打印中心

随着3D打印技术的日益成熟与广泛应用,模具企业迎来了自建3D打印中心的热潮。这一举措不仅为企业带来了前所未有的发展机遇,同时也伴随着一系列需要克服的挑战,如何看待企业引进增材制造,小编为您全面分析。 机遇篇: 加速产品创新:3D打印技术如同一把钥匙,为模具企业解锁了快速迭代产品设计的可能。企业能够迅速将创意转化为实体模型,缩短产品从设计到市场的周期,抢占市场先机。 强化定制化服务:面

深度学习--对抗生成网络(GAN, Generative Adversarial Network)

对抗生成网络(GAN, Generative Adversarial Network)是一种深度学习模型,由Ian Goodfellow等人在2014年提出。GAN主要用于生成数据,通过两个神经网络相互对抗,来生成以假乱真的新数据。以下是对GAN的详细阐述,包括其概念、作用、核心要点、实现过程、代码实现和适用场景。 1. 概念 GAN由两个神经网络组成:生成器(Generator)和判别器(D