大学生课程|统计基础与python分析3|实战:不同行业工龄与薪水的线性回归模型(免费下载所有课程材料)

本文主要是介绍大学生课程|统计基础与python分析3|实战:不同行业工龄与薪水的线性回归模型(免费下载所有课程材料),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

此系列为基础学习系列,请自行学习,课程资源免费获取地址:

https://download.csdn.net/download/weixin_68126662/88866689

目录

此系列为基础学习系列,请自行学习

1.读取数据

2.绘制离散点图

3.模型搭建

4.模型可视化

5.线性回归方程构造

6.模型优化


久菜盒子工作室:大数据科学团队/全网可搜索的久菜盒子工作室 我们是:985硕博/美国全奖doctor/计算机7年产品负责人/医学大数据公司医学研究员/SCI一区2篇/Nature子刊一篇/中文二区核心一篇/都是我们 主要领域:医学大数据分析/经管数据分析/金融模型/统计数理基础/统计学/卫生经济学/流行与统计学/ 擅长软件:R/python/stata/spss/matlab/mySQL

团队理念:从零开始,让每一个人都得到优质的科研教育

点点关注,一起成长,会变更强哦

本次责任编辑:久菜老师

1.读取数据

# 读取数据import pandas as pddf = pd.read_excel('IT行业收入表.xlsx')# 自变量要构造成二维结构x = df[['工龄']]  # 读出来是一个DataFrame# 因变量一维结构即可y = df['薪水']  # 读出来是一个Series

2.绘制离散点图

# 绘制离散点图from matplotlib import pyplot as plt# 用于正常显示中文plt.rcParams['font.sans-serif'] = ['SimHei']plt.scatter(x, y)plt.xlabel('工龄')plt.ylabel('薪水')plt.show()

3.模型搭建

# 模型搭建from sklearn.linear_model import LinearRegressionregr = LinearRegression()regr.fit(x, y)  # x需要是一个二维结构形式, y需要是一个一维结构形式;如果x是一个一维结构形式,会出错

4.模型可视化

# 模型可视化# x是一个DataFrame,x.values转成数组,才能被plot()函数读取# plt.plot(x, regr.predict(x), color='red'),即x没有values,会出错plt.scatter(x, y)plt.plot(x.values, regr.predict(x), color='red')plt.xlabel('工龄')plt.ylabel('薪水')plt.show()

5.线性回归方程构造

# 线性回归方程构造print('系数a:' + str(regr.coef_[0]))print('截距b:' + str(regr.intercept_))

显示:

系数a:2497.1513476046866

截距b:10143.131966873787

6.模型优化

一元二次线性回归:y = ax^2+bx+c

# 引入多次项的模块PolynomialFeaturesfrom sklearn.preprocessing import PolynomialFeatures# 设置最高次项为二次项,为生成二次项数据(x^2)做准备poly_reg = PolynomialFeatures(degree=2)# 将原有的x转换为一个新的二维数组x_,该二维数组包含新生成的二次项数据(x^2)和原有的一次项数据(x)x_ = poly_reg.fit_transform(x)# 获得一元二次线性回归模型regr = LinearRegression()regr.fit(x_, y)# 一元二次线性回归模型可视化plt.scatter(x, y)plt.plot(x.values, regr.predict(x_), color='red')plt.xlabel('工龄')plt.ylabel('薪水')plt.show()# 一元二次线性回归方程构造print('系数a:' + str(regr.coef_))  # 获取系数a、bprint('截距b:' + str(regr.intercept_))  # 获取常数项c

[   0.         -743.68080444  400.80398224]

13988.159332096886

注意:

第一行,第一个是x^0的系数,第二个是x^1的系数,第三个是x^2的系数

第二行,常数

这篇关于大学生课程|统计基础与python分析3|实战:不同行业工龄与薪水的线性回归模型(免费下载所有课程材料)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/746004

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

常用的jdk下载地址

jdk下载地址 安装方式可以看之前的博客: mac安装jdk oracle 版本:https://www.oracle.com/java/technologies/downloads/ Eclipse Temurin版本:https://adoptium.net/zh-CN/temurin/releases/ 阿里版本: github:https://github.com/

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal