大学生课程|统计基础与python分析3|实战:不同行业工龄与薪水的线性回归模型(免费下载所有课程材料)

本文主要是介绍大学生课程|统计基础与python分析3|实战:不同行业工龄与薪水的线性回归模型(免费下载所有课程材料),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

此系列为基础学习系列,请自行学习,课程资源免费获取地址:

https://download.csdn.net/download/weixin_68126662/88866689

目录

此系列为基础学习系列,请自行学习

1.读取数据

2.绘制离散点图

3.模型搭建

4.模型可视化

5.线性回归方程构造

6.模型优化


久菜盒子工作室:大数据科学团队/全网可搜索的久菜盒子工作室 我们是:985硕博/美国全奖doctor/计算机7年产品负责人/医学大数据公司医学研究员/SCI一区2篇/Nature子刊一篇/中文二区核心一篇/都是我们 主要领域:医学大数据分析/经管数据分析/金融模型/统计数理基础/统计学/卫生经济学/流行与统计学/ 擅长软件:R/python/stata/spss/matlab/mySQL

团队理念:从零开始,让每一个人都得到优质的科研教育

点点关注,一起成长,会变更强哦

本次责任编辑:久菜老师

1.读取数据

# 读取数据import pandas as pddf = pd.read_excel('IT行业收入表.xlsx')# 自变量要构造成二维结构x = df[['工龄']]  # 读出来是一个DataFrame# 因变量一维结构即可y = df['薪水']  # 读出来是一个Series

2.绘制离散点图

# 绘制离散点图from matplotlib import pyplot as plt# 用于正常显示中文plt.rcParams['font.sans-serif'] = ['SimHei']plt.scatter(x, y)plt.xlabel('工龄')plt.ylabel('薪水')plt.show()

3.模型搭建

# 模型搭建from sklearn.linear_model import LinearRegressionregr = LinearRegression()regr.fit(x, y)  # x需要是一个二维结构形式, y需要是一个一维结构形式;如果x是一个一维结构形式,会出错

4.模型可视化

# 模型可视化# x是一个DataFrame,x.values转成数组,才能被plot()函数读取# plt.plot(x, regr.predict(x), color='red'),即x没有values,会出错plt.scatter(x, y)plt.plot(x.values, regr.predict(x), color='red')plt.xlabel('工龄')plt.ylabel('薪水')plt.show()

5.线性回归方程构造

# 线性回归方程构造print('系数a:' + str(regr.coef_[0]))print('截距b:' + str(regr.intercept_))

显示:

系数a:2497.1513476046866

截距b:10143.131966873787

6.模型优化

一元二次线性回归:y = ax^2+bx+c

# 引入多次项的模块PolynomialFeaturesfrom sklearn.preprocessing import PolynomialFeatures# 设置最高次项为二次项,为生成二次项数据(x^2)做准备poly_reg = PolynomialFeatures(degree=2)# 将原有的x转换为一个新的二维数组x_,该二维数组包含新生成的二次项数据(x^2)和原有的一次项数据(x)x_ = poly_reg.fit_transform(x)# 获得一元二次线性回归模型regr = LinearRegression()regr.fit(x_, y)# 一元二次线性回归模型可视化plt.scatter(x, y)plt.plot(x.values, regr.predict(x_), color='red')plt.xlabel('工龄')plt.ylabel('薪水')plt.show()# 一元二次线性回归方程构造print('系数a:' + str(regr.coef_))  # 获取系数a、bprint('截距b:' + str(regr.intercept_))  # 获取常数项c

[   0.         -743.68080444  400.80398224]

13988.159332096886

注意:

第一行,第一个是x^0的系数,第二个是x^1的系数,第三个是x^2的系数

第二行,常数

这篇关于大学生课程|统计基础与python分析3|实战:不同行业工龄与薪水的线性回归模型(免费下载所有课程材料)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/746004

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原