大学生课程|统计基础与python分析3|实战:不同行业工龄与薪水的线性回归模型(免费下载所有课程材料)

本文主要是介绍大学生课程|统计基础与python分析3|实战:不同行业工龄与薪水的线性回归模型(免费下载所有课程材料),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

此系列为基础学习系列,请自行学习,课程资源免费获取地址:

https://download.csdn.net/download/weixin_68126662/88866689

目录

此系列为基础学习系列,请自行学习

1.读取数据

2.绘制离散点图

3.模型搭建

4.模型可视化

5.线性回归方程构造

6.模型优化


久菜盒子工作室:大数据科学团队/全网可搜索的久菜盒子工作室 我们是:985硕博/美国全奖doctor/计算机7年产品负责人/医学大数据公司医学研究员/SCI一区2篇/Nature子刊一篇/中文二区核心一篇/都是我们 主要领域:医学大数据分析/经管数据分析/金融模型/统计数理基础/统计学/卫生经济学/流行与统计学/ 擅长软件:R/python/stata/spss/matlab/mySQL

团队理念:从零开始,让每一个人都得到优质的科研教育

点点关注,一起成长,会变更强哦

本次责任编辑:久菜老师

1.读取数据

# 读取数据import pandas as pddf = pd.read_excel('IT行业收入表.xlsx')# 自变量要构造成二维结构x = df[['工龄']]  # 读出来是一个DataFrame# 因变量一维结构即可y = df['薪水']  # 读出来是一个Series

2.绘制离散点图

# 绘制离散点图from matplotlib import pyplot as plt# 用于正常显示中文plt.rcParams['font.sans-serif'] = ['SimHei']plt.scatter(x, y)plt.xlabel('工龄')plt.ylabel('薪水')plt.show()

3.模型搭建

# 模型搭建from sklearn.linear_model import LinearRegressionregr = LinearRegression()regr.fit(x, y)  # x需要是一个二维结构形式, y需要是一个一维结构形式;如果x是一个一维结构形式,会出错

4.模型可视化

# 模型可视化# x是一个DataFrame,x.values转成数组,才能被plot()函数读取# plt.plot(x, regr.predict(x), color='red'),即x没有values,会出错plt.scatter(x, y)plt.plot(x.values, regr.predict(x), color='red')plt.xlabel('工龄')plt.ylabel('薪水')plt.show()

5.线性回归方程构造

# 线性回归方程构造print('系数a:' + str(regr.coef_[0]))print('截距b:' + str(regr.intercept_))

显示:

系数a:2497.1513476046866

截距b:10143.131966873787

6.模型优化

一元二次线性回归:y = ax^2+bx+c

# 引入多次项的模块PolynomialFeaturesfrom sklearn.preprocessing import PolynomialFeatures# 设置最高次项为二次项,为生成二次项数据(x^2)做准备poly_reg = PolynomialFeatures(degree=2)# 将原有的x转换为一个新的二维数组x_,该二维数组包含新生成的二次项数据(x^2)和原有的一次项数据(x)x_ = poly_reg.fit_transform(x)# 获得一元二次线性回归模型regr = LinearRegression()regr.fit(x_, y)# 一元二次线性回归模型可视化plt.scatter(x, y)plt.plot(x.values, regr.predict(x_), color='red')plt.xlabel('工龄')plt.ylabel('薪水')plt.show()# 一元二次线性回归方程构造print('系数a:' + str(regr.coef_))  # 获取系数a、bprint('截距b:' + str(regr.intercept_))  # 获取常数项c

[   0.         -743.68080444  400.80398224]

13988.159332096886

注意:

第一行,第一个是x^0的系数,第二个是x^1的系数,第三个是x^2的系数

第二行,常数

这篇关于大学生课程|统计基础与python分析3|实战:不同行业工龄与薪水的线性回归模型(免费下载所有课程材料)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/746004

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语