大学生课程|统计基础与python分析3|实战:不同行业工龄与薪水的线性回归模型(免费下载所有课程材料)

本文主要是介绍大学生课程|统计基础与python分析3|实战:不同行业工龄与薪水的线性回归模型(免费下载所有课程材料),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

此系列为基础学习系列,请自行学习,课程资源免费获取地址:

https://download.csdn.net/download/weixin_68126662/88866689

目录

此系列为基础学习系列,请自行学习

1.读取数据

2.绘制离散点图

3.模型搭建

4.模型可视化

5.线性回归方程构造

6.模型优化


久菜盒子工作室:大数据科学团队/全网可搜索的久菜盒子工作室 我们是:985硕博/美国全奖doctor/计算机7年产品负责人/医学大数据公司医学研究员/SCI一区2篇/Nature子刊一篇/中文二区核心一篇/都是我们 主要领域:医学大数据分析/经管数据分析/金融模型/统计数理基础/统计学/卫生经济学/流行与统计学/ 擅长软件:R/python/stata/spss/matlab/mySQL

团队理念:从零开始,让每一个人都得到优质的科研教育

点点关注,一起成长,会变更强哦

本次责任编辑:久菜老师

1.读取数据

# 读取数据import pandas as pddf = pd.read_excel('IT行业收入表.xlsx')# 自变量要构造成二维结构x = df[['工龄']]  # 读出来是一个DataFrame# 因变量一维结构即可y = df['薪水']  # 读出来是一个Series

2.绘制离散点图

# 绘制离散点图from matplotlib import pyplot as plt# 用于正常显示中文plt.rcParams['font.sans-serif'] = ['SimHei']plt.scatter(x, y)plt.xlabel('工龄')plt.ylabel('薪水')plt.show()

3.模型搭建

# 模型搭建from sklearn.linear_model import LinearRegressionregr = LinearRegression()regr.fit(x, y)  # x需要是一个二维结构形式, y需要是一个一维结构形式;如果x是一个一维结构形式,会出错

4.模型可视化

# 模型可视化# x是一个DataFrame,x.values转成数组,才能被plot()函数读取# plt.plot(x, regr.predict(x), color='red'),即x没有values,会出错plt.scatter(x, y)plt.plot(x.values, regr.predict(x), color='red')plt.xlabel('工龄')plt.ylabel('薪水')plt.show()

5.线性回归方程构造

# 线性回归方程构造print('系数a:' + str(regr.coef_[0]))print('截距b:' + str(regr.intercept_))

显示:

系数a:2497.1513476046866

截距b:10143.131966873787

6.模型优化

一元二次线性回归:y = ax^2+bx+c

# 引入多次项的模块PolynomialFeaturesfrom sklearn.preprocessing import PolynomialFeatures# 设置最高次项为二次项,为生成二次项数据(x^2)做准备poly_reg = PolynomialFeatures(degree=2)# 将原有的x转换为一个新的二维数组x_,该二维数组包含新生成的二次项数据(x^2)和原有的一次项数据(x)x_ = poly_reg.fit_transform(x)# 获得一元二次线性回归模型regr = LinearRegression()regr.fit(x_, y)# 一元二次线性回归模型可视化plt.scatter(x, y)plt.plot(x.values, regr.predict(x_), color='red')plt.xlabel('工龄')plt.ylabel('薪水')plt.show()# 一元二次线性回归方程构造print('系数a:' + str(regr.coef_))  # 获取系数a、bprint('截距b:' + str(regr.intercept_))  # 获取常数项c

[   0.         -743.68080444  400.80398224]

13988.159332096886

注意:

第一行,第一个是x^0的系数,第二个是x^1的系数,第三个是x^2的系数

第二行,常数

这篇关于大学生课程|统计基础与python分析3|实战:不同行业工龄与薪水的线性回归模型(免费下载所有课程材料)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/746004

相关文章

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

前端下载文件时如何后端返回的文件流一些常见方法

《前端下载文件时如何后端返回的文件流一些常见方法》:本文主要介绍前端下载文件时如何后端返回的文件流一些常见方法,包括使用Blob和URL.createObjectURL创建下载链接,以及处理带有C... 目录1. 使用 Blob 和 URL.createObjectURL 创建下载链接例子:使用 Blob

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用