kalman 卡尔曼滤波器

2024-02-20 02:48
文章标签 卡尔曼滤波 kalman

本文主要是介绍kalman 卡尔曼滤波器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论基础

为什么需要协方差?

标准差和方差一般是用来描述一维数据的,但现实生活中我们常常会遇到含有多维数据的数据集,最简单的是大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子的欢迎程度是否存在一些联系。协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义:

clip_image002[6]

来度量各个维度偏离其均值的程度,协方差可以这样来定义:

clip_image002[8]

协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐越受女孩欢迎。如果结果为负值, 就说明两者是负相关,越猥琐女孩子越讨厌。如果为0,则两者之间没有关系,猥琐不猥琐和女孩子喜不喜欢之间没有关联,就是统计上说的“相互独立”。

从协方差的定义上我们也可以看出一些显而易见的性质,如:

clip_image002[10]

clip_image002[12]

协方差多了就是协方差矩阵

上一节提到的猥琐和受欢迎的问题是典型二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算 n!(n2)!2 个协方差,那自然而然的我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义:

Cn×n=(ci,j,ci,j=cov(Dimi,Dimj))

这个定义还是很容易理解的,我们可以举一个简单的三维的例子,假设数据集有 {x,y,z} 三个维度,则协方差矩阵为

可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度上的方差。

2.卡尔曼滤波器的介绍
(Introduction to the Kalman Filter)

为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。

在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。

好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。

由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。

现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。

就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!

下面就要言归正传,讨论真正工程系统上的卡尔曼。

3.    卡尔曼滤波器算法
(The Kalman Filter Algorithm)

在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。

首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k) 
再加上系统的测量值:
Z(k)=H X(k)+V(k) 
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:
X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:
P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
其中Kg为卡尔曼增益(Kalman Gain):
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)

到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:
P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。

卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。根据这5个公式,可以很容易的实现计算机的程序。

下面,我会用程序举一个实际运行的例子。。。
4.    简单例子
(A Simple Example)

这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。所举的例子是进一步描述第二节的例子,而且还会配以程序模拟结果。

根据第二节的描述,把房间看成一个系统,然后对这个系统建模。当然,我们见的模型不需要非常地精确。我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量,所以U(k)=0。因此得出:
X(k|k-1)=X(k-1|k-1) ……….. (6)
式子(2)可以改成:
P(k|k-1)=P(k-1|k-1) +Q ……… (7)

因为测量的值是温度计的,跟温度直接对应,所以H=1。式子3,4,5可以改成以下:
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8)
Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9)
P(k|k)=(1-Kg(k))P(k|k-1) ……… (10)

现在我们模拟一组测量值作为输入。假设房间的真实温度为25度,我模拟了200个测量值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。

为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。他们的值不用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。但是对于P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。我选了X(0|0)=1度,P(0|0)=10。

该系统的真实温度为25度,图中用黑线表示。图中红线是卡尔曼滤波器输出的最优化结果(该结果在算法中设置了Q=1e-6,R=1e-1)。
最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:
X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)
 
Y(k) = H(k)·X(k)+N(k)
其中
 
X(k)和Y(k)分别是k时刻的状态矢量和观测矢量

F(k,k-1)为状态转移矩阵


U(k)为k时刻动态噪声


T(k,k-1)为系统控制矩阵


H(k)为k时刻观测矩阵


N(k)为k时刻观测噪声


则卡尔曼滤波的算法流程为:
 
预估计X(k)^= F(k,k-1)·X(k-1) 
  1. 计算预估计协方差矩阵
    C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
    Q(k) = U(k)×U(k)'
     
  2. 计算卡尔曼增益矩阵
    K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)
    R(k) = N(k)×N(k)'
     
  3. 更新估计
    X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]
     
  4. 计算更新后估计协防差矩阵
    C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'
     
  5. X(k+1) = X(k)~
    C(k+1) = C(k)~
    重复以上步骤


这篇关于kalman 卡尔曼滤波器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/726808

相关文章

无迹卡尔曼滤波算法(C语言代码)

无迹卡尔曼滤波(Unscented Kalman Filter, UKF)是一种非线性状态估计算法,它通过无迹变换来处理非线性系统,相比扩展卡尔曼滤波(EKF),UKF在处理非线性系统时更具鲁棒性。下面是一个简单的无迹卡尔曼滤波器的C语言实现示例。这个实现展示了如何定义UKF并进行状态估计。 #include <stdio.h>#include <math.h>#include <strin

MATLAB代码|中心差分卡尔曼滤波(CDKF)的滤波例程,无需下载,直接复制到MATLAB上面就能运行

文章目录 CDKF介绍代码运行结果各模块解析初始化系统模型设置CDKF循环绘图 另有关于EKF和CDKF的对比程序:EKF+CDKF两个滤波的MATLAB程序,估计三轴位置,带中文注释—— https://blog.csdn.net/callmeup/article/details/136610153。 CDKF介绍 中心差分卡尔曼滤波(Central Differe

卡尔曼滤波实现一阶马尔可夫形式的滤波|价格滤波|MATLAB代码|无需下载,复制后即可运行

一节马尔可夫 一阶马尔可夫噪声是一种具有马尔可夫性质的随机过程。在这种噪声中,当前时刻的状态只与前一时刻的状态有关,与更早的状态无关。 一阶马尔可夫噪声可以用一个状态转移矩阵表示,矩阵的每个元素表示从一个状态转移到另一个状态的概率。 滤波模型 状态量的迭代模型如下: 观测量为X的第一维,所以观测方程也就是取X的第一维。 运行结果 应用背景为价格滤波,所以对比X真值和滤波值的第一维

卡尔曼滤波公式通俗理解

本文需要配合博客卡尔曼滤波详解进行理解 1.简单介绍 参考卡尔曼滤波详解 上面可简化理解为 2.主要过程 主要过程还是参考卡尔曼滤波详解 3.实例 这里以线性运动为例 3.1 前期定义状态和变量 3.1.1分析运动情况 已知线性运动上一状态和当前状态的关系,假设没有噪声干扰,为 { x ′ = x + v x Δ t y ′ = y + v y Δ t \begin{

【逐行注释】容积卡尔曼滤波的MATLAB例程(三维CKF),无需下载,可直接复制代码到MATLAB上运行

文章目录 CKF完整源代码与注释程序运行结果绘图部分误差的统计特性计算与输出部分 CKF CKF全称为容积卡尔曼滤波,相比于UKF(无迹卡尔曼滤波),拥有更合理的理论推导和鲁棒性,且在理论上比UKF的精度更高。 另有: 与EKF的对比程序:https://blog.csdn.net/callmeup/article/details/136147833 完整源代码与注释

卡尔曼滤波算法(c语言代码)

卡尔曼滤波器是一种用于估计动态系统状态的算法,常用于信号处理、控制系统、机器人和导航等领域。以下是一个简单的卡尔曼滤波器的 C 语言实现示例。这个示例展示了如何使用卡尔曼滤波器来估计一维系统的状态。 1. 卡尔曼滤波器算法概述 卡尔曼滤波器由两部分组成:预测和更新。基本的卡尔曼滤波器包括以下步骤: 预测步骤: 预测状态估计值。预测协方差矩阵。 更新步骤: 计算卡尔曼增益。更新状态估计值。更

【逐行注释】MATLAB下的UKF(无迹卡尔曼滤波),带丰富的中文注释,可直接复制到MATLAB上运行,无需下载

文章目录 程序组成部分完整代码运行结果主要模块解读:运动模型绘图部分误差统计特性输出 程序组成部分 由模型初始化、运动模型、UKF主体部分、绘图代码和输出部分组成: 完整代码 将下列代码复制粘贴到MATLAB里面,即可运行: % 三维状态量的UKF例程% 作者联系方式:微信matlabfilter(除前期达成一致外,付费咨询)% date: 2024-8-7/V

卡尔曼滤波器、扩展卡尔曼滤波器、无向卡尔曼滤波器的详细推导

这段时间做轴承故障诊断和预测的时候,需要一个针对已经获取了特征向量的工具来对轴承故障状态进行估计和预测。卡尔曼滤波器可以实现对过去、当前和未来目标位置的估计,所以想通过卡尔曼滤波器的设计思路找到一些灵感。虽然最后发现:卡尔曼滤波器中的状态量是有具体的物理含义的物理量,而表征轴承故障状态的量只是一种表征量。这两者之间存在着本质的差别,因为轴承的退化过程目前为止还不能建模。虽然如此,我还是想将卡尔曼滤

卡尔曼滤波(一)

1、理论部分 卡尔曼滤波使用的准则是线性最小方差估计(LMMSE),因此,经典卡尔曼滤波适用于线性高斯系统,系统模型如下:              W和V分别代表过程噪声和量测噪声,数学期望为0,方差分别为Q和R,X代表系统状态。本文假定已有一定的线性系统基础,因此不对上图中公式做具体介绍。并且本文着重介绍公式的由来、公式为什么是这种形式,至于其中的物理意义之类的就不多说了。 首先给出卡

卡尔曼滤波详解:一维卡尔曼滤波实例解析(五个公式以及各个参数的意义)

一、引言 本文以rssi(接收信号强度)滤波为背景,结合卡尔曼的五个公式,设计 rssi 一维卡尔曼滤波器,用MATLAB语言实现一维卡尔曼滤波器,并附上代码和滤波结果图; 本文工分为以下几个部分: 1、引言 2、模型的系统方程和状态方程 3、卡尔曼滤波过程及五个基本公式 4、公式中每个参数详细注释 5、结合rssi滤波实例设计滤波器 6、MATLAB实现滤波器   二、模型的