Pytorch实战3:DCGAN深度卷积对抗生成网络生成动漫头像

2024-02-19 15:38

本文主要是介绍Pytorch实战3:DCGAN深度卷积对抗生成网络生成动漫头像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

版权申明:本文章为本人原创内容,转载请注明出处,谢谢合作!

实验环境:

1.Pytorch 0.4.0
2.torchvision 0.2.1
3.Python 3.6
4.Win10+Pycharm
本项目是基于DCGAN的,代码是在《深度学习框架PyTorch:入门与实践》第七章的配套代码上做过大量修改过的。项目所用数据集获取:点击获取 提取码:g5qa,感谢知乎用户何之源爬取的数据。 请将下载的压缩包里的图片完整解压至data/face/目录下。整个项目的代码结构如下图:
这里写图片描述
其中data/face里是存放训练图片的,imgs/存放的是最终的训练结果,model.py是DCGAN的结构,train.py是主要的训练文件。

首先是,model.py:
import torch.nn as nn
# 定义生成器网络G
class NetG(nn.Module):def __init__(self, ngf, nz):super(NetG, self).__init__()# layer1输入的是一个100x1x1的随机噪声, 输出尺寸(ngf*8)x4x4self.layer1 = nn.Sequential(nn.ConvTranspose2d(nz, ngf * 8, kernel_size=4, stride=1, padding=0, bias=False),nn.BatchNorm2d(ngf * 8),nn.ReLU(inplace=True))# layer2输出尺寸(ngf*4)x8x8self.layer2 = nn.Sequential(nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf * 4),nn.ReLU(inplace=True))# layer3输出尺寸(ngf*2)x16x16self.layer3 = nn.Sequential(nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf * 2),nn.ReLU(inplace=True))# layer4输出尺寸(ngf)x32x32self.layer4 = nn.Sequential(nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf),nn.ReLU(inplace=True))# layer5输出尺寸 3x96x96self.layer5 = nn.Sequential(nn.ConvTranspose2d(ngf, 3, 5, 3, 1, bias=False),nn.Tanh())# 定义NetG的前向传播def forward(self, x):out = self.layer1(x)out = self.layer2(out)out = self.layer3(out)out = self.layer4(out)out = self.layer5(out)return out# 定义鉴别器网络D
class NetD(nn.Module):def __init__(self, ndf):super(NetD, self).__init__()# layer1 输入 3 x 96 x 96, 输出 (ndf) x 32 x 32self.layer1 = nn.Sequential(nn.Conv2d(3, ndf, kernel_size=5, stride=3, padding=1, bias=False),nn.BatchNorm2d(ndf),nn.LeakyReLU(0.2, inplace=True))# layer2 输出 (ndf*2) x 16 x 16self.layer2 = nn.Sequential(nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 2),nn.LeakyReLU(0.2, inplace=True))# layer3 输出 (ndf*4) x 8 x 8self.layer3 = nn.Sequential(nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 4),nn.LeakyReLU(0.2, inplace=True))# layer4 输出 (ndf*8) x 4 x 4self.layer4 = nn.Sequential(nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 8),nn.LeakyReLU(0.2, inplace=True))# layer5 输出一个数(概率)self.layer5 = nn.Sequential(nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),nn.Sigmoid())# 定义NetD的前向传播def forward(self,x):out = self.layer1(x)out = self.layer2(out)out = self.layer3(out)out = self.layer4(out)out = self.layer5(out)return out
然后是,train.py:
import argparse
import torch
import torchvision
import torchvision.utils as vutils
import torch.nn as nn
from random import randint
from model import NetD, NetGparser = argparse.ArgumentParser()
parser.add_argument('--batchSize', type=int, default=64)
parser.add_argument('--imageSize', type=int, default=96)
parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector')
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--ndf', type=int, default=64)
parser.add_argument('--epoch', type=int, default=25, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--data_path', default='data/', help='folder to train data')
parser.add_argument('--outf', default='imgs/', help='folder to output images and model checkpoints')
opt = parser.parse_args()
# 定义是否使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#图像读入与预处理
transforms = torchvision.transforms.Compose([torchvision.transforms.Scale(opt.imageSize),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])dataset = torchvision.datasets.ImageFolder(opt.data_path, transform=transforms)dataloader = torch.utils.data.DataLoader(dataset=dataset,batch_size=opt.batchSize,shuffle=True,drop_last=True,
)netG = NetG(opt.ngf, opt.nz).to(device)
netD = NetD(opt.ndf).to(device)criterion = nn.BCELoss()
optimizerG = torch.optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizerD = torch.optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))label = torch.FloatTensor(opt.batchSize)
real_label = 1
fake_label = 0for epoch in range(1, opt.epoch + 1):for i, (imgs,_) in enumerate(dataloader):# 固定生成器G,训练鉴别器DoptimizerD.zero_grad()## 让D尽可能的把真图片判别为1imgs=imgs.to(device)output = netD(imgs)label.data.fill_(real_label)label=label.to(device)errD_real = criterion(output, label)errD_real.backward()## 让D尽可能把假图片判别为0label.data.fill_(fake_label)noise = torch.randn(opt.batchSize, opt.nz, 1, 1)noise=noise.to(device)fake = netG(noise)  # 生成假图output = netD(fake.detach()) #避免梯度传到G,因为G不用更新errD_fake = criterion(output, label)errD_fake.backward()errD = errD_fake + errD_realoptimizerD.step()# 固定鉴别器D,训练生成器GoptimizerG.zero_grad()# 让D尽可能把G生成的假图判别为1label.data.fill_(real_label)label = label.to(device)output = netD(fake)errG = criterion(output, label)errG.backward()optimizerG.step()print('[%d/%d][%d/%d] Loss_D: %.3f Loss_G %.3f'% (epoch, opt.epoch, i, len(dataloader), errD.item(), errG.item()))vutils.save_image(fake.data,'%s/fake_samples_epoch_%03d.png' % (opt.outf, epoch),normalize=True)torch.save(netG.state_dict(), '%s/netG_%03d.pth' % (opt.outf, epoch))torch.save(netD.state_dict(), '%s/netD_%03d.pth' % (opt.outf, epoch))

实验结果:

跑完第1个epoch的结果:
这里写图片描述
跑完第25个epoch的结果:
这里写图片描述

这篇关于Pytorch实战3:DCGAN深度卷积对抗生成网络生成动漫头像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/725119

相关文章

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为