基于轻量级卷积神经网络模型MobileNet开发构建基于GTSRB数据集的道路交通标识识别系统

本文主要是介绍基于轻量级卷积神经网络模型MobileNet开发构建基于GTSRB数据集的道路交通标识识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相信经常需要开车出行的人对于各种各样的道路交通标识定是不陌生的,但是对于经常不开车的人来说生活中出现的形形色色的道路交通标识就未必都能认出来了,本文的主要目的就是想要基于CNN来开发构建道路交通标识识别分析系统,实现看图识标,这里我们选择的是德国的道路交通标识数据集GTSRB,关于该数据集在我前面的博文中有很详细的操作使用说明,如果有需要的话可以自行移步阅读即可。

《Python实现交通标志牌(GTSRB数据集)解析处理》

这里就不再对数据集的处理进行介绍了,直接步入正文。

首先看下实例效果:

接下来简单看下数据集:

这里我们选择的MobileNetv1的模型,MobileNet是一种轻量级的卷积神经网络模型,旨在在计算资源受限的移动设备上实现高效的图像分类和目标检测。其主要原理如下:

Depthwise Separable Convolution:MobileNet使用Depthwise Separable Convolution来减少参数量和计算量。这是一种将标准卷积分解成深度卷积(Depthwise Convolution)和逐点卷积(Pointwise Convolution)两个步骤的方法。深度卷积仅对输入的每个通道进行卷积,减少了卷积核的数量。逐点卷积使用1x1卷积核来将深度卷积的输出转化为期望的特征维度。这种分解有效降低了参数量,减少了计算量。

网络结构设计:MobileNet采用了基于深度可分离卷积的轻量网络结构。网络主要由一系列重复的卷积块和下采样层构成。卷积块包含了深度卷积、逐点卷积和激活函数。下采样层通常使用步长较大的深度可分离卷积来减少特征图的尺寸。通过这种设计,MobileNet减少了网络的深度和参数量,从而在较小的设备上实现了高效的推理。

优点:

轻量高效:MobileNet采用了Depthwise Separable Convolution和轻量网络结构,大大减少了参数量和计算量,使得它在计算资源受限的设备上运行速度快。
网络结构可定制:MobileNet的网络结构可以根据不同的需求和资源限制进行调整和定制。可以通过调整深度可分离卷积的层数和通道数来平衡准确性和模型大小。
缺点:

精度受限:由于网络结构的轻量化和参数减少,MobileNet相对于大型网络模型,如ResNet和Inception等,可能牺牲了一定的精度。
对复杂数据集的泛化能力有限:MobileNet在处理复杂数据集上的泛化能力可能相对较差,适用于较简单的图像分类和目标检测任务。
需要根据实际应用场景和资源限制来权衡使用MobileNet的优势和劣势。在资源受限的设备上,如移动设备或嵌入式系统,MobileNet是一种高效的选择,但在对准确性和复杂性要求较高的任务上,可能需要考虑更为复杂的网络结构。

MobileNetv1模型核心代码实现如下所示:

def MobileNet(classes=43):img_input = Input(shape=(224,224,3))x = convBlock(img_input, 32, 1.0, strides=(2, 2))x = dwConvBlock(x, 64, 1.0, 1, block_id=1)x = dwConvBlock(x, 128, 1.0, 1, strides=(2, 2), block_id=2)x = dwConvBlock(x, 128, 1.0, 1, block_id=3)x = dwConvBlock(x, 256, 1.0, 1, strides=(2, 2), block_id=4)x = dwConvBlock(x, 256, 1.0, 1, block_id=5)x = dwConvBlock(x, 512, 1.0, 1, strides=(2, 2), block_id=6)x = dwConvBlock(x, 512, 1.0, 1, block_id=7)x = dwConvBlock(x, 512, 1.0, 1, block_id=8)x = dwConvBlock(x, 512, 1.0, 1, block_id=9)x = dwConvBlock(x, 512, 1.0, 1, block_id=10)x = dwConvBlock(x, 512, 1.0, 1, block_id=11)x = dwConvBlock(x, 1024, 1.0, 1, strides=(2, 2), block_id=12)x = dwConvBlock(x, 1024, 1.0, 1, block_id=13)x = GlobalAveragePooling2D()(x)shape = (1, 1, 1024)x = Reshape(shape)(x)x = Dropout(1e-3)(x)x = Conv2D(classes, (1, 1), padding="same")(x)x = Activation("softmax")(x)x = Reshape((classes,))(x)inputs = img_inputmodel = Model(inputs, x)return model

等待训练完成后我们对其训练结果进行可视化展示。核心代码实现如下所示:

# 准确率曲线
plt.clf()
plt.figure(figsize=(12, 6))
plt.plot(train, label="Train Acc Cruve")
plt.plot(test, label="Test Acc Cruve")
plt.title("Train-Test Accuracy Cruve")
plt.legend(loc="upper center", ncol=2)
plt.savefig("train_acc.png")# 损失值曲线
plt.clf()
plt.figure(figsize=(12, 6))
plt.plot(train, label="Train Loss Cruve")
plt.plot(test, label="Test Loss Cruve")
plt.title("Train-Test Loss Cruve")
plt.legend(loc="upper center", ncol=2)
plt.savefig("train_loss.png")

结果输出如下所示:

【loss曲线】

【accuracy曲线】

综合来看模型的效果已经是非常好的了。

感兴趣的话也都可以自行动手实践下!

这篇关于基于轻量级卷积神经网络模型MobileNet开发构建基于GTSRB数据集的道路交通标识识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711902

相关文章

Agent开发核心技术解析以及现代Agent架构设计

《Agent开发核心技术解析以及现代Agent架构设计》在人工智能领域,Agent并非一个全新的概念,但在大模型时代,它被赋予了全新的生命力,简单来说,Agent是一个能够自主感知环境、理解任务、制定... 目录一、回归本源:到底什么是Agent?二、核心链路拆解:Agent的"大脑"与"四肢"1. 规划模

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

Python+wxPython开发一个文件属性比对工具

《Python+wxPython开发一个文件属性比对工具》在日常的文件管理工作中,我们经常会遇到同一个文件存在多个版本,或者需要验证备份文件与源文件是否一致,下面我们就来看看如何使用wxPython模... 目录引言项目背景与需求应用场景核心需求运行结果技术选型程序设计界面布局核心功能模块关键代码解析文件大

C++多线程开发环境配置方法

《C++多线程开发环境配置方法》文章详细介绍了如何在Windows上安装MinGW-w64和VSCode,并配置环境变量和编译任务,使用VSCode创建一个C++多线程测试项目,并通过配置tasks.... 目录下载安装 MinGW-w64下载安装VS code创建测试项目配置编译任务创建 tasks.js

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E