基于轻量级卷积神经网络模型MobileNet开发构建基于GTSRB数据集的道路交通标识识别系统

本文主要是介绍基于轻量级卷积神经网络模型MobileNet开发构建基于GTSRB数据集的道路交通标识识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相信经常需要开车出行的人对于各种各样的道路交通标识定是不陌生的,但是对于经常不开车的人来说生活中出现的形形色色的道路交通标识就未必都能认出来了,本文的主要目的就是想要基于CNN来开发构建道路交通标识识别分析系统,实现看图识标,这里我们选择的是德国的道路交通标识数据集GTSRB,关于该数据集在我前面的博文中有很详细的操作使用说明,如果有需要的话可以自行移步阅读即可。

《Python实现交通标志牌(GTSRB数据集)解析处理》

这里就不再对数据集的处理进行介绍了,直接步入正文。

首先看下实例效果:

接下来简单看下数据集:

这里我们选择的MobileNetv1的模型,MobileNet是一种轻量级的卷积神经网络模型,旨在在计算资源受限的移动设备上实现高效的图像分类和目标检测。其主要原理如下:

Depthwise Separable Convolution:MobileNet使用Depthwise Separable Convolution来减少参数量和计算量。这是一种将标准卷积分解成深度卷积(Depthwise Convolution)和逐点卷积(Pointwise Convolution)两个步骤的方法。深度卷积仅对输入的每个通道进行卷积,减少了卷积核的数量。逐点卷积使用1x1卷积核来将深度卷积的输出转化为期望的特征维度。这种分解有效降低了参数量,减少了计算量。

网络结构设计:MobileNet采用了基于深度可分离卷积的轻量网络结构。网络主要由一系列重复的卷积块和下采样层构成。卷积块包含了深度卷积、逐点卷积和激活函数。下采样层通常使用步长较大的深度可分离卷积来减少特征图的尺寸。通过这种设计,MobileNet减少了网络的深度和参数量,从而在较小的设备上实现了高效的推理。

优点:

轻量高效:MobileNet采用了Depthwise Separable Convolution和轻量网络结构,大大减少了参数量和计算量,使得它在计算资源受限的设备上运行速度快。
网络结构可定制:MobileNet的网络结构可以根据不同的需求和资源限制进行调整和定制。可以通过调整深度可分离卷积的层数和通道数来平衡准确性和模型大小。
缺点:

精度受限:由于网络结构的轻量化和参数减少,MobileNet相对于大型网络模型,如ResNet和Inception等,可能牺牲了一定的精度。
对复杂数据集的泛化能力有限:MobileNet在处理复杂数据集上的泛化能力可能相对较差,适用于较简单的图像分类和目标检测任务。
需要根据实际应用场景和资源限制来权衡使用MobileNet的优势和劣势。在资源受限的设备上,如移动设备或嵌入式系统,MobileNet是一种高效的选择,但在对准确性和复杂性要求较高的任务上,可能需要考虑更为复杂的网络结构。

MobileNetv1模型核心代码实现如下所示:

def MobileNet(classes=43):img_input = Input(shape=(224,224,3))x = convBlock(img_input, 32, 1.0, strides=(2, 2))x = dwConvBlock(x, 64, 1.0, 1, block_id=1)x = dwConvBlock(x, 128, 1.0, 1, strides=(2, 2), block_id=2)x = dwConvBlock(x, 128, 1.0, 1, block_id=3)x = dwConvBlock(x, 256, 1.0, 1, strides=(2, 2), block_id=4)x = dwConvBlock(x, 256, 1.0, 1, block_id=5)x = dwConvBlock(x, 512, 1.0, 1, strides=(2, 2), block_id=6)x = dwConvBlock(x, 512, 1.0, 1, block_id=7)x = dwConvBlock(x, 512, 1.0, 1, block_id=8)x = dwConvBlock(x, 512, 1.0, 1, block_id=9)x = dwConvBlock(x, 512, 1.0, 1, block_id=10)x = dwConvBlock(x, 512, 1.0, 1, block_id=11)x = dwConvBlock(x, 1024, 1.0, 1, strides=(2, 2), block_id=12)x = dwConvBlock(x, 1024, 1.0, 1, block_id=13)x = GlobalAveragePooling2D()(x)shape = (1, 1, 1024)x = Reshape(shape)(x)x = Dropout(1e-3)(x)x = Conv2D(classes, (1, 1), padding="same")(x)x = Activation("softmax")(x)x = Reshape((classes,))(x)inputs = img_inputmodel = Model(inputs, x)return model

等待训练完成后我们对其训练结果进行可视化展示。核心代码实现如下所示:

# 准确率曲线
plt.clf()
plt.figure(figsize=(12, 6))
plt.plot(train, label="Train Acc Cruve")
plt.plot(test, label="Test Acc Cruve")
plt.title("Train-Test Accuracy Cruve")
plt.legend(loc="upper center", ncol=2)
plt.savefig("train_acc.png")# 损失值曲线
plt.clf()
plt.figure(figsize=(12, 6))
plt.plot(train, label="Train Loss Cruve")
plt.plot(test, label="Test Loss Cruve")
plt.title("Train-Test Loss Cruve")
plt.legend(loc="upper center", ncol=2)
plt.savefig("train_loss.png")

结果输出如下所示:

【loss曲线】

【accuracy曲线】

综合来看模型的效果已经是非常好的了。

感兴趣的话也都可以自行动手实践下!

这篇关于基于轻量级卷积神经网络模型MobileNet开发构建基于GTSRB数据集的道路交通标识识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711902

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加