基于轻量级卷积神经网络模型MobileNet开发构建基于GTSRB数据集的道路交通标识识别系统

本文主要是介绍基于轻量级卷积神经网络模型MobileNet开发构建基于GTSRB数据集的道路交通标识识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相信经常需要开车出行的人对于各种各样的道路交通标识定是不陌生的,但是对于经常不开车的人来说生活中出现的形形色色的道路交通标识就未必都能认出来了,本文的主要目的就是想要基于CNN来开发构建道路交通标识识别分析系统,实现看图识标,这里我们选择的是德国的道路交通标识数据集GTSRB,关于该数据集在我前面的博文中有很详细的操作使用说明,如果有需要的话可以自行移步阅读即可。

《Python实现交通标志牌(GTSRB数据集)解析处理》

这里就不再对数据集的处理进行介绍了,直接步入正文。

首先看下实例效果:

接下来简单看下数据集:

这里我们选择的MobileNetv1的模型,MobileNet是一种轻量级的卷积神经网络模型,旨在在计算资源受限的移动设备上实现高效的图像分类和目标检测。其主要原理如下:

Depthwise Separable Convolution:MobileNet使用Depthwise Separable Convolution来减少参数量和计算量。这是一种将标准卷积分解成深度卷积(Depthwise Convolution)和逐点卷积(Pointwise Convolution)两个步骤的方法。深度卷积仅对输入的每个通道进行卷积,减少了卷积核的数量。逐点卷积使用1x1卷积核来将深度卷积的输出转化为期望的特征维度。这种分解有效降低了参数量,减少了计算量。

网络结构设计:MobileNet采用了基于深度可分离卷积的轻量网络结构。网络主要由一系列重复的卷积块和下采样层构成。卷积块包含了深度卷积、逐点卷积和激活函数。下采样层通常使用步长较大的深度可分离卷积来减少特征图的尺寸。通过这种设计,MobileNet减少了网络的深度和参数量,从而在较小的设备上实现了高效的推理。

优点:

轻量高效:MobileNet采用了Depthwise Separable Convolution和轻量网络结构,大大减少了参数量和计算量,使得它在计算资源受限的设备上运行速度快。
网络结构可定制:MobileNet的网络结构可以根据不同的需求和资源限制进行调整和定制。可以通过调整深度可分离卷积的层数和通道数来平衡准确性和模型大小。
缺点:

精度受限:由于网络结构的轻量化和参数减少,MobileNet相对于大型网络模型,如ResNet和Inception等,可能牺牲了一定的精度。
对复杂数据集的泛化能力有限:MobileNet在处理复杂数据集上的泛化能力可能相对较差,适用于较简单的图像分类和目标检测任务。
需要根据实际应用场景和资源限制来权衡使用MobileNet的优势和劣势。在资源受限的设备上,如移动设备或嵌入式系统,MobileNet是一种高效的选择,但在对准确性和复杂性要求较高的任务上,可能需要考虑更为复杂的网络结构。

MobileNetv1模型核心代码实现如下所示:

def MobileNet(classes=43):img_input = Input(shape=(224,224,3))x = convBlock(img_input, 32, 1.0, strides=(2, 2))x = dwConvBlock(x, 64, 1.0, 1, block_id=1)x = dwConvBlock(x, 128, 1.0, 1, strides=(2, 2), block_id=2)x = dwConvBlock(x, 128, 1.0, 1, block_id=3)x = dwConvBlock(x, 256, 1.0, 1, strides=(2, 2), block_id=4)x = dwConvBlock(x, 256, 1.0, 1, block_id=5)x = dwConvBlock(x, 512, 1.0, 1, strides=(2, 2), block_id=6)x = dwConvBlock(x, 512, 1.0, 1, block_id=7)x = dwConvBlock(x, 512, 1.0, 1, block_id=8)x = dwConvBlock(x, 512, 1.0, 1, block_id=9)x = dwConvBlock(x, 512, 1.0, 1, block_id=10)x = dwConvBlock(x, 512, 1.0, 1, block_id=11)x = dwConvBlock(x, 1024, 1.0, 1, strides=(2, 2), block_id=12)x = dwConvBlock(x, 1024, 1.0, 1, block_id=13)x = GlobalAveragePooling2D()(x)shape = (1, 1, 1024)x = Reshape(shape)(x)x = Dropout(1e-3)(x)x = Conv2D(classes, (1, 1), padding="same")(x)x = Activation("softmax")(x)x = Reshape((classes,))(x)inputs = img_inputmodel = Model(inputs, x)return model

等待训练完成后我们对其训练结果进行可视化展示。核心代码实现如下所示:

# 准确率曲线
plt.clf()
plt.figure(figsize=(12, 6))
plt.plot(train, label="Train Acc Cruve")
plt.plot(test, label="Test Acc Cruve")
plt.title("Train-Test Accuracy Cruve")
plt.legend(loc="upper center", ncol=2)
plt.savefig("train_acc.png")# 损失值曲线
plt.clf()
plt.figure(figsize=(12, 6))
plt.plot(train, label="Train Loss Cruve")
plt.plot(test, label="Test Loss Cruve")
plt.title("Train-Test Loss Cruve")
plt.legend(loc="upper center", ncol=2)
plt.savefig("train_loss.png")

结果输出如下所示:

【loss曲线】

【accuracy曲线】

综合来看模型的效果已经是非常好的了。

感兴趣的话也都可以自行动手实践下!

这篇关于基于轻量级卷积神经网络模型MobileNet开发构建基于GTSRB数据集的道路交通标识识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711902

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat