R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间...

本文主要是介绍R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:http://tecdat.cn/?p=26578 

指数分布是泊松过程中事件之间时间的概率分布,因此它用于预测到下一个事件的等待时间,例如,您需要在公共汽车站等待的时间,直到下一班车到了点击文末“阅读原文”获取完整代码数据)。

相关视频

在本文中,我们将使用指数分布,假设它的参数 λ ,即事件之间的平均时间,在某个时间点 k 发生了变化,即:

1cffcf991100a4e82bd08311890131c4.png

我们的主要目标是使用 Gibbs 采样器在给定来自该分布的 n 个观测样本的情况下估计参数 λ、α 和 k。

吉布斯Gibbs 采样器

Gibbs 采样器是 Metropolis-Hastings 采样器的一个特例,通常在目标是多元分布时使用。使用这种方法,链是通过从目标分布的边缘分布中采样生成的,因此每个候选点都被接受。

Gibbs 采样器生成马尔可夫链如下:

  • 让 90e39b2c70b1edb9d8ae5db30ad3b4dd.png 是 Rd 中的随机向量,在时间 t=0 初始化 X(0)。

  • 对于每次迭代 t=1,2,3,...重复:

  • 设置 x1=X1(t-1)。

  • 对于每个 j=1,...,d:

  • 生成 X∗j(t) 从 d13f65a90c1184928941f6fbc7a2ca28.png, 其中 33b9b4b5a6b3146d79a1bc15f89da6d3.png 是给定 X(-j) 的 Xj的单变量条件密度。

  • 更新 a0dd6dbde59f4537bb93f99e0f465282.png.

  • 当每个候选点都被接受时,设置 a59c8d6c7047f211e02707f042a1ab8f.png.

  • 增加 t。

贝叶斯公式

变点问题的一个简单公式假设 f和 g 已知密度:

1601e9b57696db82b91b483e6c176e5c.png

其中 k 未知且 k=1,2,...,n。让 Yi为公交车到达公交车站之间经过的时间(以分钟为单位)。假设变化点发生在第 k分钟,即:

78a05e911039848bfb49091f250ad075.png

当 Y=(Y1,Y2,...,Yn) 时,似然 L(Y|k)由下式给出:

b87f3574979366ed5dc56085b27fe4af.png

假设具有独立先验的贝叶斯模型由下式给出:

656bd5e545ae437450fc34dc9d3e5049.png

数据和参数的联合分布为:

d7d810cecfe7f150b8e2a4b9ffafed75.png

其中,

b7633f06d43cdf3642e5a90d4b79ba9e.png

正如我之前提到的,Gibbs 采样器的实现需要从目标分布的边缘分布中采样,因此我们需要找到 λ、α 和 k 的完整条件分布。你怎么能这样做?简单来说,您必须从上面介绍的连接分布中选择仅依赖于感兴趣参数的项并忽略其余项。

相关视频

λ 的完整条件分布由下式给出:

919f9b902045e91ef249ee225cb22b5a.png

α 的完整条件分布由下式给出:

9479bfe7e8a0281e27d8037b982ad99b.png

k 的完整条件分布由下式给出:

7423e733db4b26b6ad9e0c2c5ef25bd6.png

计算方法

在这里,您将学习如何使用使用 R 的 Gibbs 采样器来估计参数 λ、α 和 k。

数据

首先,我们从具有变化点的下一个指数分布生成数据:

c632d5fb79838aeb168d90b9b2beabd6.png

set.seed(98712)
y <- c(rexp(25, rate = 2), rexp(35, rate = 10))

考虑到公交车站的情况,一开始公交车平均每2分钟一班,但从时间i=26开始,公交车开始平均每10分钟一班到公交车站。


点击标题查阅往期内容

80a884acb8261501485dd66467982cad.jpeg

R语言Gibbs抽样的贝叶斯简单线性回归仿真分析

outside_default.png

左右滑动查看更多

outside_default.png

01

3d9ca32719c644df60992e2e31e3de2a.png

02

1876f9f0d65700a0446114e2bb295ffe.png

03

226805c3fe01a6c2f2ee1be5dcf84cb7.png

04

d638d2dd6a2c0fb8db1aba5446877164.png

Gibbs采样器的实现

首先,我们需要初始化 k、λ 和 α。

n <- length(y) # 样本的观察值的数量
lci <- 10000 # 链的大小
aba <- alpha <- k <- numeric(lcan)
k\[1\] <- sample(1:n,

现在,对于算法的每次迭代,我们需要生成 λ(t)、α(t) 和 k(t),如下所示(记住如果 k+1>n 没有变化点):

b485bac07e6ecf4b180a6b1d532889b2.png

for (i in 2:lcan){kt <- k\[i-1\]# 生成lambdalambda\[i\] <- rgamma# 生成α# 产生k   for (j in 1:n) {L\[j\] <- ((lambda\[i\] / alpha\[i# 删除链条上的前9000个值
bunIn <- 9000

结果

在本节中,我们将介绍 Gibbs 采样器生成的链及其参数 λ、α 和 k 的分布。参数的真实值用红线表示。

f70db7276e50ac0089f359fbe6aa49c8.png

a5e2c46a564bf03106d5cdd3cd1dcf53.png

a615a0765702c2cf046eae7cc35a4812.png

下表显示了参数的实际值和使用 Gibbs 采样器获得的估计值的平均值:

res <- c(mean(k\[-(1:bun)\]), mean(lmba\[-(1:burn)\]), mean(apa\[-(1:buI)\]))
resfil

1b218e5b11c300914bd9744ab0204dc7.png

结论

从结果中,我们可以得出结论,使用 R 中的 Gibbs 采样器获得的具有变点的指数分布对参数 k、λ 和 α 的估计值的平均值接近于参数的实际值,但是我们期望更好估计。这可能是由于选择了链的初始值或选择了 λ 和 α的先验分布。


0d7d3d6314626062a58658de3a4d2671.png

点击文末“阅读原文”

获取全文完整资料。

本文选自《R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间》。

点击标题查阅往期内容

R语言马尔可夫MCMC中的METROPOLIS HASTINGS,MH算法抽样(采样)法可视化实例

python贝叶斯随机过程:马尔可夫链Markov-Chain,MC和Metropolis-Hastings,MH采样算法可视化

Python贝叶斯推断Metropolis-Hastings(M-H)MCMC采样算法的实现

Metropolis Hastings采样和贝叶斯泊松回归Poisson模型

Matlab用BUGS马尔可夫区制转换Markov switching随机波动率模型、序列蒙特卡罗SMC、M H采样分析时间序列

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析

R语言Metropolis Hastings采样和贝叶斯泊松回归Poisson模型

R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断

R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例

R语言贝叶斯Poisson泊松-正态分布模型分析职业足球比赛进球数

R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数

R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病

R语言中贝叶斯网络(BN)、动态贝叶斯网络、线性模型分析错颌畸形数据

R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归

Python贝叶斯回归分析住房负担能力数据集

R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析

Python用PyMC3实现贝叶斯线性回归模型

R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型

R语言Gibbs抽样的贝叶斯简单线性回归仿真分析

R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言贝叶斯线性回归和多元线性回归构建工资预测模型

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

R语言stan进行基于贝叶斯推断的回归模型

R语言中RStan贝叶斯层次模型分析示例

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较

R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

视频:R语言中的Stan概率编程MCMC采样的贝叶斯模型

R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计

7dc750d88919ffffbea3b5e334d7e7e8.png

97cc385b6c9ba87ec02d9abd39628c51.jpeg

459e12c9de6eaa66e42c063c4a867876.png

这篇关于R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/710158

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

PLsql Oracle 下载安装图文过程详解

《PLsqlOracle下载安装图文过程详解》PL/SQLDeveloper是一款用于开发Oracle数据库的集成开发环境,可以通过官网下载安装配置,并通过配置tnsnames.ora文件及环境变... 目录一、PL/SQL Developer 简介二、PL/SQL Developer 安装及配置详解1.下

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

springboot启动流程过程

《springboot启动流程过程》SpringBoot简化了Spring框架的使用,通过创建`SpringApplication`对象,判断应用类型并设置初始化器和监听器,在`run`方法中,读取配... 目录springboot启动流程springboot程序启动入口1.创建SpringApplicat