cuda加速求解龙格库塔四阶五步积分

2024-02-11 03:59

本文主要是介绍cuda加速求解龙格库塔四阶五步积分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一般代码使用cuda加速的方法:

  1. 使用PyTorch进行加速:

    • 首先,你需要将你的ODE系统定义为PyTorch模型,这样可以利用PyTorch的自动微分功能和GPU加速。
    • 然后,你需要将数据和参数转换为PyTorch张量,并将它们移动到GPU上。
    • 最后,你可以使用PyTorch的优化器来优化参数,同时在GPU上执行计算。
  2. 使用Numba进行加速:

    • Numba可以将Python代码即时编译成CUDA代码,从而在GPU上执行。你可以使用@jit装饰器来标记需要加速的函数,并指定target='cuda'来将其编译为CUDA代码。
    • 在函数内部,你需要将数据和参数转换为Numba支持的CUDA数组,并使用CUDA加速的函数来执行计算。

目录

使用numba加速

numba应用案例

关于二阶转一阶

使用pytorch加速

pytorch应用案例


使用numba加速

import numba as nb@nb.njit
def rk45(func, t0, y0, t_end, h):t = t0y = y0while t ' t_end:k1 = h * func(t, y)k2 = h * func(t + 0.25 * h, y + 0.25 * k1)k3 = h * func(t + 3/8 * h, y + 3/32 * k1 + 9/32 * k2)k4 = h * func(t + 12/13 * h, y + 1932/2197 * k1 - 7200/2197 * k2 + 7296/2197 * k3)k5 = h * func(t + h, y + 439/216 * k1 - 8 * k2 + 3680/513 * k3 - 845/4104 * k4)k6 = h * func(t + 0.5 * h, y - 8/27 * k1 + 2 * k2 - 3544/2565 * k3 + 1859/4104 * k4 - 11/40 * k5)y_next = y + 25/216 * k1 + 1408/2565 * k3 + 2197/4104 * k4 - 0.2 * k5y_error = 1/360 * k1 - 128/4275 * k3 - 2197/75240 * k4 + 1/50 * k5 + 2/55 * k6t += hy = y_nextreturn t, y

numba应用案例

我们有一个简单的二阶线性常微分方程:\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 2y = \sin(t) 要求解常微分方程组(ODEs)。

我们可以将这个二阶微分方程转化为一个一阶微分方程组,然后使用RK45方法来求解。

import numpy as np
import matplotlib.pyplot as plt
import numba as nb@nb.njit
def func(t, y):dydt = np.zeros(2)dydt[0] = y[1]dydt[1] = -2*y[1] - 2*y[0] + np.sin(t)return dydt@nb.njit
def rk45(func, t0, y0, t_end, h):# 省略 rk45 函数的实现,可以使用之前给出的实现t0 = 0.0
t_end = 10.0
y0 = np.array([0.0, 0.0])
h = 0.1t_values = []
y_values = []t = t0
y = y0
while t < t_end:t_values.append(t)y_values.append(y[0])t, y = rk45(func, t, y, t_end, h)plt.plot(t_values, y_values)
plt.xlabel('t')
plt.ylabel('y')
plt.title('Solution of the ODE')
plt.show()

关于二阶转一阶

给定的二阶微分方程是:

[ \frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 2y = \sin(t)]

首先,我们引入新变量 ( u ) 来代表 ( y ) 的一阶导数 ( \frac{dy}{dt} ),即:

[ u = \frac{dy}{dt}]

现在我们可以将原始的二阶微分方程重写为两个一阶微分方程:

第一个一阶微分方程是由新变量 ( u ) 的定义直接得到的:

[\frac{dy}{dt} = u]

第二个一阶微分方程来自于原始方程对 ( y ) 的二阶导数的替换,我们将 ( \frac{d^2y}{dt^2} ) 用 ( \frac{du}{dt} ) 替换:

[ \frac{du}{dt} = \sin(t) - 2u - 2y]

现在numba我们有了一个一阶微分方程组:

[ \frac{dy}{dt} = u ]
[\frac{du}{dt} = \sin(t) - 2u - 2y ]

这个方程组可以用来描述原始的二阶微分方程的动态。一阶微分方程组更容易用数值方法求解,因为大多数数值求解器都是为一阶方程设计的。在实际应用中,这个方程组可以用标准的数值方法(如欧拉法、龙格-库塔法等)进行求解。

使用pytorch加速

import torchdef rk45(func, t0, y0, t_end, h):t = t0y = torch.tensor(y0, requires_grad=True, dtype=torch.float64)  # 将y0转换为PyTorch张量while t ' t_end:k1 = h * func(t, y)k2 = h * func(t + 0.25 * h, y + 0.25 * k1)k3 = h * func(t + 3/8 * h, y + 3/32 * k1 + 9/32 * k2)k4 = h * func(t + 12/13 * h, y + 1932/2197 * k1 - 7200/2197 * k2 + 7296/2197 * k3)k5 = h * func(t + h, y + 439/216 * k1 - 8 * k2 + 3680/513 * k3 - 845/4104 * k4)k6 = h * func(t + 0.5 * h, y - 8/27 * k1 + 2 * k2 - 3544/2565 * k3 + 1859/4104 * k4 - 11/40 * k5)y_next = y + 25/216 * k1 + 1408/2565 * k3 + 2197/4104 * k4 - 0.2 * k5y_error = 1/360 * k1 - 128/4275 * k3 - 2197/75240 * k4 + 1/50 * k5 + 2/55 * k6t += hy = y_nextreturn t, y

pytorch应用案例

假设我们有一个简单的常微分方程组:

dy1/dt = y2
dy2/dt = -y1

我们可以使用rk45函数来求解这个常微分方程组的数值解。

import torch# 定义常微分方程组的右端函数
def func(t, y):dy1_dt = y[1]dy2_dt = -y[0]return torch.tensor([dy1_dt, dy2_dt], dtype=torch.float64)# 使用rk45函数求解常微分方程组
def rk45(func, t0, y0, t_end, h):# 省略 rk45 函数的实现,可以使用之前给出的实现# 初始条件
t0 = 0.0
y0 = [1.0, 0.0]
t_end = 10.0
h = 0.1# 求解常微分方程组
t, y = rk45(func, t0, y0, t_end, h)print("t:", t)
print("y:", y)

这篇关于cuda加速求解龙格库塔四阶五步积分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698778

相关文章

微积分-积分应用5.4(功)

术语“功”在日常语言中用来表示完成一项任务所需的总努力量。在物理学中,它有一个依赖于“力”概念的技术含义。直观上,你可以将力理解为对物体的推或拉——例如,一个书本在桌面上的水平推动,或者地球对球的向下拉力。一般来说,如果一个物体沿着一条直线运动,位置函数为 s ( t ) s(t) s(t),那么物体上的力 F F F(与运动方向相同)由牛顿第二运动定律给出,等于物体的质量 m m m 与其

PyInstaller问题解决 onnxruntime-gpu 使用GPU和CUDA加速模型推理

前言 在模型推理时,需要使用GPU加速,相关的CUDA和CUDNN安装好后,通过onnxruntime-gpu实现。 直接运行python程序是正常使用GPU的,如果使用PyInstaller将.py文件打包为.exe,发现只能使用CPU推理了。 本文分析这个问题和提供解决方案,供大家参考。 问题分析——找不到ONNX Runtime GPU 动态库 首先直接运行python程序

2024 年高教社杯全国大学生数学建模竞赛题目——2024 年高教社杯全国大学生数学建模竞赛题目的求解

2024 年高教社杯全国大学生数学建模竞赛题目 (请先阅读“ 全国大学生数学建模竞赛论文格式规范 ”) 2024 年高教社杯全国大学生数学建模竞赛题目 随着城市化进程的加快、机动车的快速普及, 以及人们活动范围的不断扩大,城市道 路交通拥堵问题日渐严重,即使在一些非中心城市,道路交通拥堵问题也成为影响地方经 济发展和百姓幸福感的一个“痛点”,是相关部门的棘手难题之一。 考虑一个拥有知名景区

机器人助力上下料搬运,加速仓库转运自动化

近年来,国内制造业领域掀起了一股智能化改造的浪潮,众多工厂纷纷采纳富唯智能提供的先进物流解决方案,这一举措显著优化了生产流程,实现了生产效率的飞跃式增长。得益于这些成功案例,某信息技术服务企业在工厂智能物流建设的进程中,也选择了与富唯智能合作。 为了应对日益增长的物料搬运需求,匹配成品输出节拍,该公司引入了富唯智能复合机器人AMR与搬运机器人AGV,实现了仓库成品搬运自动化,大幅减少人工

基于SA模拟退火算法的多车辆TSP问题求解matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述        基于SA模拟退火算法的多车辆TSP问题求解matlab仿真,三个车辆分别搜索其对应的最短路径,仿真后得到路线规划图和SA收敛曲线。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 (完整程序运行后无水印)

ACM比赛中如何加速c++的输入输出?如何使cin速度与scanf速度相当?什么是最快的输入输出方法?

在竞赛中,遇到大数据时,往往读文件成了程序运行速度的瓶颈,需要更快的读取方式。相信几乎所有的C++学习者都在cin机器缓慢的速度上栽过跟头,于是从此以后发誓不用cin读数据。还有人说Pascal的read语句的速度是C/C++中scanf比不上的,C++选手只能干着急。难道C++真的低Pascal一等吗?答案是不言而喻的。一个进阶的方法是把数据一下子读进来,然后再转化字符串,这种方法传说中

OpenGL/GLUT实践:流体模拟——数值解法求解Navier-Stokes方程模拟二维流体(电子科技大学信软图形与动画Ⅱ实验)

源码见GitHub:A-UESTCer-s-Code 文章目录 1 实现效果2 实现过程2.1 流体模拟实现2.1.1 网格结构2.1.2 数据结构2.1.3 程序结构1) 更新速度场2) 更新密度值 2.1.4 实现效果 2.2 颜色设置2.2.1 颜色绘制2.2.2 颜色交互2.2.3 实现效果 2.3 障碍设置2.3.1 障碍定义2.3.2 障碍边界条件判定2.3.3 障碍实现2.3.

只需五步,三分钟极速部署企业级大数据平台服务

著名的 O’Reilly 公司断言:「数据是下一个 ‘Intel Inside’ ,未来属于利用数据并将其转换成产品的公司和人们。」 大数据隐含的巨大社会、经济价值已经引起了越来越多企业的关注,为了让用户获得更便捷、灵活、高效的大数据解决方案,减少海量数据分析、处理、查询的延迟,青云QingCloud 基于 SparkMR 推出新一代可提供计算、存储、分析、查询一站式全方位的大数据服务 Qi

变速积分PID控制算法

变速积分PID控制算法 变速积分PID控制算法:变速积分PID的基本思想:变速积分的PID积分项表达式: 注:本文内容摘自《先进PID控制MATLAB仿真(第4版)》刘金琨 编著,研读此书受益匪浅,感谢作者! 变速积分PID控制算法: 在普通的PID控制算法中,由于积分系数 k i k_i ki​是常数,所以在整个控制过程中,积分增量不变。而系统对积分项的要求是,系统偏差大

梯形积分PID控制算法

梯形积分PID控制算法 梯形积分PID控制算法: 注:本文内容摘自《先进PID控制MATLAB仿真(第4版)》刘金琨 编著,研读此书受益匪浅,感谢作者! 梯形积分PID控制算法: 在PID控制律中积分项的作用是消除余差,为了减小余差,应提高积分项的运算精度,为此,可将矩形积分改为梯形积分。梯形积分的计算公式: ∫ 0 t e ( t ) d t = ∑ i = 0 k e