Snake Conv

2024-02-01 21:20
文章标签 conv snake

本文主要是介绍Snake Conv,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

跟着这位同志的视频将yolo V8 做了替换,很快就跑通了。
Bilibili 飞飞

只不过,Snake Conv对于我的问题上,准确率不升反降。有观察到在一些feature类似,但是又不能算作一个类别的,它会容易混淆。我的问题比较tricky,因为数据量不平衡和数据少(就是力求不平衡和数据少),需要找到一个不需要在意数据量的方法。Emmm…没关系,或许你们的问题可以用得上呢~

除此之外还需要把weight转换成tensorRT, 飞飞视频的代码里有几个地方需要改一下,就能顺利输出TensorRT:

下面的zero, max_y, max_x 需要确保都是在torch cuda上的量。所以需要看着添加.to(device)

def _bilinear_interpolate_3D(self, input_feature, y, x):device = input_feature.devicey = y.reshape([-1]).float()x = x.reshape([-1]).float()zero = torch.zeros([]).int().to(device)max_y = torch.tensor(self.width - 1)max_x = torch.tensor(self.height - 1)# find 8 grid locationsy0 = torch.floor(y).int()y1 = y0 + 1x0 = torch.floor(x).int()x1 = x0 + 1# clip out coordinates exceeding feature map volumey0 = torch.clamp(y0, zero, max_y.to(device))y1 = torch.clamp(y1, zero, max_y.to(device))x0 = torch.clamp(x0, zero, max_x.to(device))x1 = torch.clamp(x1, zero, max_x.to(device))input_feature_flat = input_feature.flatten()input_feature_flat = input_feature_flat.reshape(self.num_batch, self.num_channels, self.width, self.height)input_feature_flat = input_feature_flat.permute(0, 2, 3, 1)input_feature_flat = input_feature_flat.reshape(-1, self.num_channels)dimension = self.height * self.widthbase = torch.arange(self.num_batch) * dimensionbase = base.reshape([-1, 1]).float()repeat = torch.ones([self.num_points * self.width * self.height]).unsqueeze(0)repeat = repeat.float()base = torch.matmul(base, repeat)base = base.reshape([-1])base = base.to(device)base_y0 = base + y0 * self.heightbase_y1 = base + y1 * self.height# top rectangle of the neighbourhood volumeindex_a0 = base_y0 - base + x0index_c0 = base_y0 - base + x1# bottom rectangle of the neighbourhood volumeindex_a1 = base_y1 - base + x0index_c1 = base_y1 - base + x1# get 8 grid valuesvalue_a0 = input_feature_flat[index_a0.type(torch.int64)].to(device)value_c0 = input_feature_flat[index_c0.type(torch.int64)].to(device)value_a1 = input_feature_flat[index_a1.type(torch.int64)].to(device)value_c1 = input_feature_flat[index_c1.type(torch.int64)].to(device)# find 8 grid locationsy0 = torch.floor(y).int()y1 = y0 + 1x0 = torch.floor(x).int()x1 = x0 + 1# clip out coordinates exceeding feature map volumey0 = torch.clamp(y0, zero, max_y.to(device) + 1)y1 = torch.clamp(y1, zero, max_y.to(device) + 1)x0 = torch.clamp(x0, zero, max_x.to(device) + 1)x1 = torch.clamp(x1, zero, max_x.to(device) + 1)x0_float = x0.float()x1_float = x1.float()y0_float = y0.float()y1_float = y1.float()vol_a0 = ((y1_float - y) * (x1_float - x)).unsqueeze(-1).to(device)vol_c0 = ((y1_float - y) * (x - x0_float)).unsqueeze(-1).to(device)vol_a1 = ((y - y0_float) * (x1_float - x)).unsqueeze(-1).to(device)vol_c1 = ((y - y0_float) * (x - x0_float)).unsqueeze(-1).to(device)outputs = (value_a0 * vol_a0 + value_c0 * vol_c0 + value_a1 * vol_a1 +value_c1 * vol_c1)if self.morph == 0:outputs = outputs.reshape([self.num_batch,self.num_points * self.width,1 * self.height,self.num_channels,])outputs = outputs.permute(0, 3, 1, 2)else:outputs = outputs.reshape([self.num_batch,1 * self.width,self.num_points * self.height,self.num_channels,])outputs = outputs.permute(0, 3, 1, 2)return outputsdef deform_conv(self, input, offset, if_offset):y, x = self._coordinate_map_3D(offset, if_offset)deformed_feature = self._bilinear_interpolate_3D(input, y, x)return deformed_feature

在这里插入图片描述
在这里插入图片描述
Anyway, 反正结构看起来挺颠的

然后我有尝试更改了能改的层,随机的都尝试了一下,最后都没有原始的c2f效果好。

# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f_DySnakeConv, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f_DySnakeConv, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f_DySnakeConv, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f_DySnakeConv, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f_DySnakeConv, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f_DySnakeConv, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f_DySnakeConv, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f_DySnakeConv, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

后续我会再check一遍snake conv的论文,顺便猜测or理解一下,为啥在我的问题上,它效果不太行~ (除了数据量之外)

这篇关于Snake Conv的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/668504

相关文章

YOLOv8改进 | Conv篇 | YOLOv8引入DWR

1. DWR介绍 1.1  摘要:当前的许多工作直接采用多速率深度扩张卷积从一个输入特征图中同时捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。 然而,这种设计可能会因为结构和超参数的不合理而导致多尺度上下文信息的访问困难。 为了降低多尺度上下文信息的绘制难度,我们提出了一种高效的多尺度特征提取方法,将原始的单步方法分解为区域残差-语义残差两个步骤。 在该方法中,多速率深度扩张卷积

蛇优化算法(Snake Optimization, SO)优化RBF神经网络的扩散速度实现多数入多输出数据预测,可以更改数据集(MATLAB代码)

一、蛇优化算法优化RBF神经网络的扩散速度原理介绍 RBF神经网络的扩散速度通常与它的径向基函数的宽度参数(σ)有关,这个参数控制了函数的径向作用范围。在高斯核函数中,当σ值较大时,函数的扩散速度较快,即它的影响范围更广,对输入数据的局部变化不太敏感;而σ值较小时,函数的扩散速度较慢,影响范围较小,对输入数据的局部变化更加敏感 。 RBF神经网络通过使用高斯函数作为隐含层激活函数,实现了从低维

YOLOv10改进 | Conv篇 |YOLOv10引入SPD-Conv卷积

1. SPD-Conv介绍 1.1 摘要:卷积神经网络(CNN)在图像分类和目标检测等许多计算机视觉任务中取得了巨大的成功。 然而,在图像分辨率较低或物体较小的更艰巨的任务中,它们的性能会迅速下降。 在本文中,我们指出,这源于现有 CNN 架构中一个有缺陷但常见的设计,即使用跨步卷积和/或池化层,这会导致细粒度信息的丢失和学习效率较低的特征表示 。 为此,我们提出了一种名为 SPD-Conv

YOLOv8改进 | 卷积模块 | 用坐标卷积CoordConv替换Conv

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录:《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进 CoordConv 是一种针对卷积神经网络(CNNs)的改进方法,旨在解决传统卷积在处理空间位置信息时的局限性。CoordConv 通过向卷积层

【YOLOv8改进[CONV]】使用MSBlock二次创新C2f模块实现轻量化 + 含全部代码和详细修改方式 + 手撕结构图 + 轻量化 + 涨点

本文将使用MSBlock二次创新C2f模块实现轻量化,助力YOLOv8目标检测效果的实践,文中含全部代码、详细修改方式以及手撕结构图。助您轻松理解改进的方法,实现有效涨点。 改进前和改进后的参数对比: 目录 一 MSBlock 二 使用MSBlock二次创新C2f模块实现轻量化 1 整体修改 ① 添加C2f_MSBlock.py文件 ② 修改ultralytics/nn/task

【YOLOv10改进[CONV]】使用DualConv二次创新C2f模块实现轻量化 + 含全部代码和详细修改方式 + 手撕结构图 + 全网首发

本文将使用DualConv二次创新C2f模块实现轻量化,助力YOLOv10目标检测效果的实践,文中含全部代码、详细修改方式以及手撕结构图。助您轻松理解改进的方法。 改进前和改进后的参数对比:    目录 一 DualConv 1 结合3×3卷积和1×1卷积核 2 DualConv 3 可视化 二 C2f_DualConv助力YOLOv10轻量化 1 整体修改 ① 添加C2f

【YOLOv8改进[CONV]】SPDConv助力YOLOv8目标检测效果 + 含全部代码和详细修改方式 + 手撕结构图

本文将使用SPDConv助力YOLOv8目标检测效果的实践,文中含全部代码、详细修改方式以及手撕结构图。助您轻松理解改进的方法。 改进前和改进后的参数对比: 目录 一 SPDConv 二 SPDConv助力YOLOv8目标检测效果 1 整体修改 ① 添加SPDConv.py文件 ② 修改ultralytics/nn/tasks.py文件 2 配置文件 3 训练 一

YOLOv5改进 | Conv篇 | 利用YOLOv10提出的UIB模块二次创新C3(附代码 + 完整修改教程)

一、本文介绍 本文给大家带来的改进机制是利用利用YOLOv10提出的UIB模块二次创新C3助力YOLOv5进行有效涨点,其中C2fUIB模块所用到的CIB模块是一种紧凑的倒置块结构,它采用廉价的深度卷积进行空间混合,并采用成本效益高的点卷积进行通道混合。本文针对该方法给出多种使用方法,大家可以根据自己的数据集来针对性的使用,同时本文附C3UIB网络结构图! 欢迎大家订阅我的专栏一起学习YOL

深入解析 YOLOv8 中的 `conv.py`(代码图文全解析-下)

😎 作者介绍:我是程序员行者孙,一个热爱分享技术的制能工人。计算机本硕,人工制能研究生。公众号:AI Sun,视频号:AI-行者Sun 🎈 本文专栏:本文收录于《yolov8》系列专栏,相信一份耕耘一份收获,我会详细的分享yolo系列目标检测详细知识点,yolov1到yolov9全系列,不说废话,祝大家早日中稿cvpr 🤓 欢迎大家关注其他专栏,我将分享Web前后端开发、人工智能、机器学习

【YOLOv8改进[Conv]】使用YOLOv9中的Adown模块改进Conv模块的实践 + 含全部代码和修改方式 + 有效涨点

本文中进行使用YOLOv9中的Adown模块改进Conv模块的实践 ,文中包含全部代码和修改方式 ,有效涨点。 目录  一 YOLOv9 1 信息丢失问题 2 PGI ① 信息瓶颈 ② 可逆函数<