YOLOv10改进 | Conv篇 |YOLOv10引入SPD-Conv卷积

2024-06-21 01:44

本文主要是介绍YOLOv10改进 | Conv篇 |YOLOv10引入SPD-Conv卷积,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. SPD-Conv介绍

1.1 摘要:卷积神经网络(CNN)在图像分类和目标检测等许多计算机视觉任务中取得了巨大的成功。 然而,在图像分辨率较低或物体较小的更艰巨的任务中,它们的性能会迅速下降。 在本文中,我们指出,这源于现有 CNN 架构中一个有缺陷但常见的设计,即使用跨步卷积和/或池化层,这会导致细粒度信息的丢失和学习效率较低的特征表示 。 为此,我们提出了一种名为 SPD-Conv 的新 CNN 构建块来代替每个跨步卷积层和每个池化层(从而完全消除它们)。 SPD-Conv 由空间到深度 (SPD) 层和非跨步卷积 (Conv) 层组成,可应用于大多数(如果不是全部)CNN 架构。 我们在两个最具代表性的计算机视觉任务下解释这种新设计:目标检测和图像分类。 然后,我们通过将 SPD-Conv 应用于 YOLOv5 和 ResNet 来创建新的 CNN 架构,并根据经验表明,我们的方法显着优于最先进的深度学习模型,特别是在低分辨率图像和小物体的更艰巨的任务上。

官方论文地址:https://arxiv.org/pdf/2208.03641

官方代码地址:

这篇关于YOLOv10改进 | Conv篇 |YOLOv10引入SPD-Conv卷积的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079856

相关文章

SpringBoot项目引入token设置方式

《SpringBoot项目引入token设置方式》本文详细介绍了JWT(JSONWebToken)的基本概念、结构、应用场景以及工作原理,通过动手实践,展示了如何在SpringBoot项目中实现JWT... 目录一. 先了解熟悉JWT(jsON Web Token)1. JSON Web Token是什么鬼

一种改进的red5集群方案的应用、基于Red5服务器集群负载均衡调度算法研究

转自: 一种改进的red5集群方案的应用: http://wenku.baidu.com/link?url=jYQ1wNwHVBqJ-5XCYq0PRligp6Y5q6BYXyISUsF56My8DP8dc9CZ4pZvpPz1abxJn8fojMrL0IyfmMHStpvkotqC1RWlRMGnzVL1X4IPOa_  基于Red5服务器集群负载均衡调度算法研究 http://ww

SW - 引入第三方dwg图纸后,修改坐标原点

文章目录 SW - 引入第三方dwg图纸后,修改坐标原点概述笔记设置图纸新原点END SW - 引入第三方dwg图纸后,修改坐标原点 概述 在solidworks中引入第三方的dwg格式图纸后,坐标原点大概率都不合适。 全图自动缩放后,引入的图纸离默认的原点位置差很多。 需要自己重新设置原点位置,才能自动缩放后,在工作区中间显示引入的图纸。 笔记 将dwg图纸拖到SW中

react笔记 8-17 属性绑定 class绑定 引入图片 循环遍历

1、绑定属性 constructor(){super()this.state={name:"张三",title:'我是一个title'}}render() {return (<div><div>aaaaaaa{this.state.name}<div title={this.state.title}>我是一个title</div></div></div>)} 绑定属性直接使用花括号{}   注

YOLOv8改进实战 | 注意力篇 | 引入CVPR2024 PKINet 上下文锚点注意力CAAttention

YOLOv8专栏导航:点击此处跳转 前言 YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。 YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他

fetch-event-source 如何通过script全局引入

fetchEventSource源码中导出了两种类型的包cjs和esm。但是有个需求如何在原生是js中通过script标签引呢?需要加上type=module。今天介绍另一种方法 下载源码文件: https://github.com/Azure/fetch-event-source.git 安装: npm install --save-dev webpack webpack-cli ts

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

YOLOv8改进 | Conv篇 | YOLOv8引入DWR

1. DWR介绍 1.1  摘要:当前的许多工作直接采用多速率深度扩张卷积从一个输入特征图中同时捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。 然而,这种设计可能会因为结构和超参数的不合理而导致多尺度上下文信息的访问困难。 为了降低多尺度上下文信息的绘制难度,我们提出了一种高效的多尺度特征提取方法,将原始的单步方法分解为区域残差-语义残差两个步骤。 在该方法中,多速率深度扩张卷积

机器学习模型中的因果关系:引入单调约束

单调约束是使机器学习模型可行的关键,但它们仍未被广泛使用欢迎来到雲闪世界。 碳ausality 正在迅速成为每个数据科学家工具包中必不可少的组成部分。 这是有充分理由的。 事实上,因果模型在商业中具有很高的价值,因为它们为“假设”情景提供了更可靠的估计,特别是在用于做出影响业务结果的决策时。 在本文中,我将展示如何通过简单的更改(实际上添加一行代码)将传统的 ML 模型(如随机森林、L