【深度学习】MNN ImageProcess处理图像顺序,逻辑,均值,方差

本文主要是介绍【深度学习】MNN ImageProcess处理图像顺序,逻辑,均值,方差,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 介绍
  • Opencv numpy
  • 等效的MNN处理

介绍

MNN ImageProcess处理图像是先reisze还是后resize,均值方差怎么处理,是什么通道顺序?这篇文章告诉你答案。

Opencv numpy

这段代码是一个图像预处理函数,用于对输入的图像进行一系列处理,以便将其用于某些机器学习模型的输入。

  1. cv2.imdecode(np.fromfile(imgpath, dtype=np.uint8), 1):这行代码从文件中读取图像数据,并使用OpenCV库中的imdecode函数将其解码为图像矩阵。参数1表示图像应该按原样解码,即不进行颜色转换或通道重新排序。

  2. cv2.resize(img, (224, 224), interpolation=cv2.INTER_LINEAR):接下来,将图像调整大小为 (224, 224),这是因为一些深度学习模型(如AlexNet、VGG等)需要固定大小的输入图像。

  3. img = img.astype(np.float32):将图像数据类型转换为 32 位浮点数,通常这是深度学习模型期望的输入类型。

  4. img = img[..., ::-1]:颜色通道顺序调整,将图像从 BGR 格式转换为 RGB 格式。

  5. img_norm_cfg:定义了图像的归一化参数,包括均值和标准差。这些参数用于将图像像素值标准化到一个较小的范围,以便模型更好地处理图像数据。

  6. img -= img_norm_cfg['mean']:对图像进行均值归一化。

  7. img *= img_norm_cfg['std']:对图像进行标准差归一化。

  8. img = img.transpose((2, 0, 1)):调整图像的维度顺序,将通道维度置于第一个位置。

  9. img = np.expand_dims(img, axis=0):在图像的第一个维度(批处理维度)上添加一个维度,使其成为形状为 (1, C, H, W) 的批量图像数据,其中 C 是通道数,H 和 W 是图像的高度和宽度。

最终,函数返回预处理后的图像数据,可以直接用于输入深度学习模型进行训练或推断。

    def preprocess(self, imgpath: str):img = cv2.imdecode(np.fromfile(imgpath, dtype=np.uint8), 1)  # img是矩阵if img is None:raise Exception("image is None:" + imgpath)img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_LINEAR)img = img.astype(np.float32)img = img[..., ::-1]img_norm_cfg = dict(mean=[103.53, 116.28, 123.675],std=[0.01712, 0.01750, 0.01742])img -= img_norm_cfg['mean']img *= img_norm_cfg['std']img = img.transpose((2, 0, 1))img = np.expand_dims(img, axis=0)return img

等效的MNN处理

下面是一个等效的MNN处理:

// 获取模型和会话
ModelData GetDetModel(const char* model_file_name) {using namespace MNN;ModelData modelData;// MNNstd::shared_ptr<Interpreter> interpreter(Interpreter::createFromFile(model_file_name));ScheduleConfig config_s;config_s.type = MNN_FORWARD_AUTO;Session* mSession = interpreter->createSession(config_s);Tensor* mInputTensor = interpreter->getSessionInput(mSession, NULL);Tensor* mOutputTensor = interpreter->getSessionOutput(mSession, NULL);// 输入处理,形成一个mnn张量// dst = (img - mean) * normalMNN::CV::ImageProcess::Config config;config.destFormat = MNN::CV::ImageFormat::RGB;config.sourceFormat = MNN::CV::ImageFormat::BGR;float mean_[4] = {103.53f, 116.28f, 123.675f, 0.0f};memcpy(config.mean, mean_, 4 * sizeof(float));float normal_[4] = {0.01712f, 0.01750f, 0.01742f, 0.0f};memcpy(config.normal, normal_, 4 * sizeof(float));config.filterType = MNN::CV::NEAREST;config.wrap = MNN::CV::ZERO;std::shared_ptr<MNN::CV::ImageProcess> image_process(MNN::CV::ImageProcess::create(config));//    MNN::CV::Matrix transform;//    image_process->setMatrix(transform);modelData.interpreter = interpreter;modelData.session = mSession;modelData.mInputTensor = mInputTensor;modelData.mOutputTensor = mOutputTensor;modelData.image_process = image_process;return modelData;
}// 释放资源
void ReleaseDetModel(ModelData& modelData) {using namespace MNN;auto interpreter = modelData.interpreter;auto mSession = modelData.session;auto mInputTensor = modelData.mInputTensor;auto mOutputTensor = modelData.mOutputTensor;auto image_process = modelData.image_process;interpreter->releaseModel();interpreter->releaseSession(mSession);
}std::vector<float> RunDetModel(ModelData& modelData,  // 模型和会话cv::Mat& img_bgr)      // 图片 opencv mat
{using namespace MNN;auto interpreter = modelData.interpreter;auto mSession = modelData.session;auto mInputTensor = modelData.mInputTensor;auto mOutputTensor = modelData.mOutputTensor;auto image_process = modelData.image_process;cv::Mat srcimgx;srcimgx = img_bgr.clone();cv::resize(srcimgx, srcimgx, cv::Size(224, 224), 0, 0, cv::INTER_LINEAR);int img_resize_height = srcimgx.rows;int img_resize_width = srcimgx.cols;// resizeSession//    interpreter->resizeTensor(mInputTensor, {1, 3, img_resize_height, img_resize_width});//    interpreter->resizeSession(mSession);// 输入处理,形成一个mnn张量std::vector<int> shape = {1, 3, img_resize_height, img_resize_width};std::shared_ptr<MNN::Tensor> input_tensor(MNN::Tensor::create<float>(shape, nullptr, MNN::Tensor::CAFFE));image_process->convert(srcimgx.data, img_resize_width, img_resize_height, 0, input_tensor.get());// 给入mInputTensormInputTensor->copyFromHostTensor(input_tensor.get());// Run mSessioninterpreter->runSession(mSession);// Get outputauto nchwTensorOt = new Tensor(mOutputTensor, Tensor::CAFFE);// 拷贝出去mOutputTensor->copyToHostTensor(nchwTensorOt);// 使用auto type = nchwTensorOt->getType();auto size = nchwTensorOt->elementSize();std::vector<int> shape_out = nchwTensorOt->shape();// values 输出形状是 img_fp_height, img_fp_width,直接给到cv::Matauto values = nchwTensorOt->host<float>();// log values sizestd::vector<float> outimg(values, values + size);delete nchwTensorOt;return outimg;
}

这篇关于【深度学习】MNN ImageProcess处理图像顺序,逻辑,均值,方差的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/663914

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学