港大、TikTok推出任意图像的深度估计大模型Depth Anything,致敬Segment Anything

本文主要是介绍港大、TikTok推出任意图像的深度估计大模型Depth Anything,致敬Segment Anything,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言        

1.摘要

2.方法

3.实验结果

4.总结

前言        

        人类有两只眼睛来估计视觉环境的深度信息,但机器人和 VR 头社等设备却往往没有这样的「配置」,往往只能靠单个摄像头或单张图像来估计深度。这个任务也被称为单目深度估计(MDE)。

图片

        近日,TikTok发布一项新型AI技术“DepthAnything”,该技术由TikTok联合香港大学和浙江大学共同研发的一种先进单目深度估计(MDE)技术,能更有效地从2D图像中识别出深度信息图。基于这些深度信息图,普通的2D影像便可转化为3D影像。相比此前已有技术,“DepthAnything”在提升深度图的质量方面取得重大突破。此技术的应用将使得TikTok平台上现有的海量2D影像能够轻松转化为3D影像,让普通手机拍摄的2D影像“一键转3D”,或将大幅推进XR产业的发展。

图片

       Depth Anything模型的出现为机器人、自动驾驶、虚拟现实等领域带来了新的希望。这一模型的出现,让人们对单目深度估计问题的解决充满了信心。值得期待的是,这一模型未来在实际应用中能够取得更好的效果,为各行各业带来更多的便利。  

图片

论文:Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data

单位:港大, TikTok, 之江实验室, 浙大

代码:https://github.com/LiheYoung/Depth-Anything

论文:https://arxiv.org/abs/2401.1089

1.摘要

        这项工作提出了 Depth Anything,这是一个非常实用的鲁棒单目深度估计解决方案。在不追求新颖的技术模块的情况下,我们的目标是建立一个简单而强大的基础模型,以处理任何情况下的任何图像。为此,我们通过设计一个数据引擎来扩大数据集,以收集和自动标注大规模无标签数据(约62M),这显著扩大了数据覆盖范围,从而能够减少泛化误差。

图片

        文章研究了两种简单而有效的策略,使数据规模化有前途。首先,通过利用数据增强工具创建一个更具挑战性的优化目标。它迫使模型积极寻找额外的视觉知识并获得鲁棒的表示。其次,开发了一种辅助监督,以强制模型从预训练的编码器中继承丰富的语义先验。我们广泛评估了它的零样本能力,包括六个公共数据集和随机捕获的照片。它展示了令人印象深刻的泛化能力(图1)。此外,通过使用NYUv2和KITTI的度量深度信息对其进行微调,我们设置了新的SOTA。我们的更好的深度模型也导致了更好的深度条件控制网。

这篇论文的主要贡献包括:

  • 强调了大规模、低成本和多样化无标注图像的数据扩展对 MDE 价值。

  • 指出了在联合训练大规模有标注和无标注图像方面的一个重要实践方法:不是直接学习原始无标注图像,而是为模型提供更困难的优化目标,让其学会使用额外的知识。

  • 提出从预训练编码器继承丰富的语义先验,从而实现更好的场景理解,而不是使用辅助性语义分割任务。

  • 新模型的零样本能力超过 MiDaS-BEiT_L-512。不仅如此,使用度量深度进行微调后,新模型的表现更是显著超过 ZoeDepth。

2.方法

图片

        本文提出了一种利用带标签和未标记图像进行单目深度估计(MDE)的方法,称之为“Depth Anything”。方法包括以下步骤:

  • 学习带标签图像(Learning Labeled Images):通过使用来自六个公共数据集的1.5M带标签图像,采用与MiDaS相似的深度值变换和归一化方法,采用仿射不变损失进行多数据集联合训练,构建了一个师傅模型T。

  • 释放未标记图像的力量(Unleashing the Power of Unlabeled Images):与传统方法不同,该方法强调利用大规模未标记图像提高数据覆盖。通过利用互联网或各种任务的公共数据集,构建了一个多样化和大规模的未标记集。通过师傅模型T为未标记集生成伪标签,然后利用带标签图像和伪标签图像的组合,训练了一个学生模型S。在训练中,采用强烈的颜色和空间扭曲来激励学生模型主动寻求额外的视觉知识。

  • 语义辅助感知(Semantic-Assisted Perception):引入了辅助语义分割任务,通过为未标记图像分配语义分割标签,提供了高级语义相关信息。然而,为了更好地处理深度估计任务,采用了DINOv2模型在语义相关任务中的优秀性能,通过辅助特征对齐损失将其强大的语义能力转移到深度模型中。

        总的来说,本文方法通过联合利用带标签和未标记图像,充分利用大规模未标记数据的优势,通过深度模型的自我挑战和语义辅助感知,实现了更强大的单目深度估计性能。方法在多个数据集上进行了评估,并取得了令人满意的结果。

3.实验结果

        在六个公开数据集与随机拍摄图片上评估了Depth Anything模型的zero-shot能力;通过度量深度信息微调达成新的SOTA;更优的深度模型进而引申出更优的深度引导ControlNet。

图片

图片

图片

图片

图片

4.总结

        本研究引入了Depth Anything模型,该模型在稳健的单目深度估计方面展现了高度实用性。通过强调廉价且多样化的未标记图像的价值,并采用两种有效策略,即在学习未标记图像时设定更具挑战性的优化目标以及保留预训练模型的丰富语义先验,使得该模型在零样本深度估计方面表现出色。此外,该模型还可作为有望初始化下游度量深度估计和语义分割任务的有效工具。

图片

        感兴趣的小伙伴可以点击下面链接体验一下,感谢你看到这里,要不就顺便左下角再点个关注吧!一个有趣有AI的AIGC公众号:关注AI、深度学习、计算机视觉、AIGC、Stable Diffusion等相关技术。

这篇关于港大、TikTok推出任意图像的深度估计大模型Depth Anything,致敬Segment Anything的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/660910

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU