本文主要是介绍【归并排序】【图论】【动态规划】【 深度游戏搜索】1569将子数组重新排序得到同一个二叉搜索树的方案数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
本文涉及知识点
动态规划汇总
图论 深度游戏搜索 归并排序 组合
LeetCoce1569将子数组重新排序得到同一个二叉搜索树的方案数
给你一个数组 nums 表示 1 到 n 的一个排列。我们按照元素在 nums 中的顺序依次插入一个初始为空的二叉搜索树(BST)。请你统计将 nums 重新排序后,统计满足如下条件的方案数:重排后得到的二叉搜索树与 nums 原本数字顺序得到的二叉搜索树相同。
比方说,给你 nums = [2,1,3],我们得到一棵 2 为根,1 为左孩子,3 为右孩子的树。数组 [2,3,1] 也能得到相同的 BST,但 [3,2,1] 会得到一棵不同的 BST 。
请你返回重排 nums 后,与原数组 nums 得到相同二叉搜索树的方案数。
由于答案可能会很大,请将结果对 10^9 + 7 取余数。
示例 1:
输入:nums = [2,1,3]
输出:1
解释:我们将 nums 重排, [2,3,1] 能得到相同的 BST 。没有其他得到相同 BST 的方案了。
示例 2:
输入:nums = [3,4,5,1,2]
输出:5
解释:下面 5 个数组会得到相同的 BST:
[3,1,2,4,5]
[3,1,4,2,5]
[3,1,4,5,2]
[3,4,1,2,5]
[3,4,1,5,2]
示例 3:
输入:nums = [1,2,3]
输出:0
解释:没有别的排列顺序能得到相同的 BST 。
提示:
1 <= nums.length <= 1000
1 <= nums[i] <= nums.length
nums 中所有数 互不相同 。
归并排序
原以为必须用归并排序的思想,其实可以不用归并排序。
原理
对每棵树(子树),只讨论左子树和右子树之间的顺序,不讨论子树内部的顺序。
a,根节点必定是第一个。
b,混略内部顺序后,左子树的节点完全相同,假定其为ln个;右子树的节点也相同,假定其为rn个。就是组合 C m + n n \Large C_{m+n}^n Cm+nn
DFS 各子树 的结果相乘。
动态规划的状态表示
每个子树的范围是确定,比如:根节点的范围为[1,n],左子树[1,nums[0]-1] 右子树[nums[0],n]。每根子树,需要三个子状态:最小值(iMin),最大值(iMax),根节点的值(nums[iRoot])。 由于1到n,都出现且只出现一次,所以此子树的节点数为:最大值-最小值+1。
动态规划的转移方程
左树:iMin,nums[iRoot]-1, nums(iRoot…]中第一个在左树范围的小标。
右树:,nums[iRoot]+1,iMax,nums(iRoot…]中第一个在右树范围的小标。
动态规划的填表顺
深度优先,从根节点开始。
动态规划的返回值
dfs(1,n,0)-1。
代码
核心代码
template<int MOD = 1000000007>
class C1097Int
{
public:C1097Int(long long llData = 0) :m_iData(llData% MOD){}C1097Int operator+(const C1097Int& o)const{return C1097Int(((long long)m_iData + o.m_iData) % MOD);}C1097Int& operator+=(const C1097Int& o){m_iData = ((long long)m_iData + o.m_iData) % MOD;return *this;}C1097Int& operator-=(const C1097Int& o){m_iData = (m_iData + MOD - o.m_iData) % MOD;return *this;}C1097Int operator-(const C1097Int& o){return C1097Int((m_iData + MOD - o.m_iData) % MOD);}C1097Int operator*(const C1097Int& o)const{return((long long)m_iData * o.m_iData) % MOD;}C1097Int& operator*=(const C1097Int& o){m_iData = ((long long)m_iData * o.m_iData) % MOD;return *this;}bool operator<(const C1097Int& o)const{return m_iData < o.m_iData;}C1097Int pow(long long n)const{C1097Int iRet = 1, iCur = *this;while (n){if (n & 1){iRet *= iCur;}iCur *= iCur;n >>= 1;}return iRet;}C1097Int PowNegative1()const{return pow(MOD - 2);}int ToInt()const{return m_iData;}
private:int m_iData = 0;;
};template<class Result = C1097Int<> >
class CCombination
{
public:CCombination(){m_v.assign(1, vector<Result>(1,1));}Result Get(int sel, int total){while (m_v.size() <= total){int iSize = m_v.size();m_v.emplace_back(iSize + 1, 1);for (int i = 1; i < iSize; i++){m_v[iSize][i] = m_v[iSize - 1][i] + m_v[iSize - 1][i - 1];}}return m_v[total][sel];}
protected:vector<vector<Result>> m_v;
};class Solution {
public:int numOfWays(vector<int>& nums) {m_nums = nums;return (DFS(1, nums.size(), 0) - 1).ToInt();}C1097Int<> DFS(int iMin, int iMax, int iRoot){int iLeftRoot = -1, iRightRoot = -1;for (int i = (int)m_nums.size()-1; i > iRoot; i--){if ((m_nums[i] < m_nums[iRoot])&&(m_nums[i] >= iMin )){iLeftRoot = i;}if ((m_nums[i] > m_nums[iRoot])&& (m_nums[i] <= iMax)){iRightRoot = i;}}C1097Int<> biRet = m_com.Get(m_nums[iRoot]-iMin,iMax-iMin);if (-1 != iLeftRoot){biRet *= DFS(iMin, m_nums[iRoot] - 1, iLeftRoot);}if (-1 != iRightRoot){biRet *= DFS(m_nums[iRoot] + 1,iMax, iRightRoot);}return biRet;}vector<int> m_nums;CCombination<> m_com;
};
2023年6月
class Solution {
public:
int numOfWays(vector& nums) {
m_vFact.emplace_back(1);
for (int i = 1; i < nums.size(); i++)
{
m_vFact.emplace_back(m_vFact.back()*i);
}
for (const auto& i : m_vFact )
{
m_vRevFact.emplace_back(i.PowNegative1());
}
return (Rev(nums) - 1).ToInt();
}
C1097Int<> Rev(vector& nums)
{
if (0 == nums.size())
{
return 1;
}
vector vLeft, vRight;
for (int i = 1; i < nums.size(); i++)
{
const int& n = nums[i];
if (n < nums[0])
{
vLeft.emplace_back(n);
}
else
{
vRight.emplace_back(n);
}
}
C1097Int<> iRet = m_vFact[vLeft.size() + vRight.size()] * m_vRevFact[vLeft.size()] * m_vRevFact[vRight.size()];
return iRet * Rev(vLeft) * Rev(vRight);
}
vector<C1097Int<>> m_vFact, m_vRevFact;
};
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快
速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关
下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
---|
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。
这篇关于【归并排序】【图论】【动态规划】【 深度游戏搜索】1569将子数组重新排序得到同一个二叉搜索树的方案数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!