自动驾驶算法(十):多项式轨迹与Minimun Snap闭式求解原理及代码讲解

本文主要是介绍自动驾驶算法(十):多项式轨迹与Minimun Snap闭式求解原理及代码讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 多项式轨迹与Minimun Snap闭式求解原理

2 代码解析


1 多项式轨迹与Minimun Snap闭式求解原理

        我们上次说的Minimun Snap,其实我们就在求一个二次函数的最优解:

        也就是优化函数p^TQp在约束Ap=b下的最小值。

        但这是一个渐进最优解而不是解析最优解,是否有一个解析最优解呢?

        我们用Ap = d的形式表达:(d表示每一段路程中的起点和终点的位置、速度、加速度),比如p_{1}(t_0),v_{1}(t_0),a_{1}(t_0),p_{1}(t_1),v_{1}(t_1),a_{1}(t_1)表示第一段起点的位置、速度、加速度、第一段终点的位置、速度、加速度。段数是k段,每段有起点和终点、起点终点有位置、速度加速度三个变量、因此维度为2*3k = 6k。      

        因此我们可以求出一个确定的p,带入 p^TQp后就计算出来了我们的最小值。

        A矩阵的维度就是一共有K段每段是n+1阶的参数,各个段的位置为6,因此维度为k(n+1) * 6K

                                                 A_{total} \begin{bmatrix} p_1\\p_2 \\... \\... \\p_k \end{bmatrix} = \begin{bmatrix} d_1\\d_2 \\... \\... \\d_k \end{bmatrix}

        更进一步的说:

        p = A^{-1}d就是我们要求解的方程。

        我们不妨先看一段,即第一段和第二段:p_i表示第i段。我画了个图:

        那么t^{(i)}这个时间点就是1段的末尾和2段的初始点。

        我们消除重复变量:

        我们一共是k+1个航路点,每个航路点有p、v、a。因此矩阵大小为3(k+1)。

        我们得到 d = Md'

        d' = C[dF dP]T,这里dF表示已知量,包括起点、终点的位移、速度、加速度,也包括中点间的已知量(我们要经过这些点)。dP表示未知量。我们可以看一个简单的例子:

        我们把它写到一起:

        我们就是dP未知,因此我们对dP求导,因此可以求出来dP的解析解。

        我们可以手动增加航路点避免碰撞:

        我们来总结一下闭式求解的步骤:

2 代码解析

        我们只讲解和上篇博客不一样的地方:

        我们先看一下运行结果:

        我们来进行代码复现:

function polys = minimum_snap_single_axis_close_form(wayp,ts,n_order,v0,a0,v1,a1)
% 参数个数 = 阶数+1
n_coef = n_order+1;
% 多项式的段数:航路点-1
n_poly = length(wayp)-1;
% 计算Q 和原来的一样
Q_all = [];
for i=1:n_polyQ_all = blkdiag(Q_all,computeQ(n_order,3,ts(i),ts(i+1)));
end

        这里依旧用n_coef表示参数个数(数量为拟合曲线的最大阶数+1),用n_poly表示多项式的段数,大小为航路点数量-1,Q的构造方式和上篇博客一致,不再赘述。

        我们来看闭式求解的步骤,我们先来计算A矩阵:

% compute A (n_continuous*2*n_poly) * (n_coef*n_poly)
n_continuous = 3;  % 1:p  2:pv  3:pva  4:pvaj  5:pvajs
% A的维度是 3*2*K(航路点个数) 阶数(N+1) * K
A = zeros(n_continuous*2*n_poly,n_coef*n_poly);
% 遍历每一段航路点
for i = 1:n_poly% 位置、速度、加速度for j = 1:n_continuous% 计算具体参数 j--参数个数(阶数+1)for k = j:n_coefif k==jt1 = 1;t2 = 1;else %k>jt1 = tk(i,k-j+1);t2 = tk(i+1,k-j+1);end% 每一段填充首和尾A(n_continuous*2*(i-1)+j,n_coef*(i-1)+k) = prod(k-j+1:k-1)*t1;A(n_continuous*2*(i-1)+n_continuous+j,n_coef*(i-1)+k) = prod(k-j+1:k-1)*t2;endend
end

        我们知道,如果我们的航路点是K段,我们要拟合多项式的次数为N。因此我们的A矩阵大小为航路点为K段,每段的话有起终点、每个起终点有X、V、A三个元素,因此我们的矩阵大小为 K*2*3 * (N+1)*K。

        先给它初始化为0。我们遍历每一段航路点,先计算这段航路点的位移、速度、加速度。

        然后我们计算M矩阵:

M = zeros(n_poly*2*n_continuous,n_continuous*(n_poly+1));
for i = 1:n_poly*2j = floor(i/2)+1;rbeg = n_continuous*(i-1)+1;cbeg = n_continuous*(j-1)+1;M(rbeg:rbeg+n_continuous-1,cbeg:cbeg+n_continuous-1) = eye(n_continuous);
end
M

        计算C矩阵和K矩阵:

% compute C
num_d = n_continuous*(n_poly+1);
C = eye(num_d);
df = [wayp,v0,a0,v1,a1]';% fix all pos(n_poly+1) + start va(2) + end va(2) 
fix_idx = [1:3:num_d,2,3,num_d-1,num_d];
free_idx = setdiff(1:num_d,fix_idx);
C = [C(:,fix_idx) C(:,free_idx)];% K
AiMC = inv(A)*M*C;
R = AiMC'*Q_all*AiMC;n_fix = length(fix_idx);
Rff = R(1:n_fix,1:n_fix);
Rpp = R(n_fix+1:end,n_fix+1:end);
Rfp = R(1:n_fix,n_fix+1:end);
Rpf = R(n_fix+1:end,1:n_fix);

        计算p恢复轨迹、位置、加速度:

dp = -inv(Rpp)*Rfp'*df;p = AiMC*[df;dp];polys = reshape(p,n_coef,n_poly);

这篇关于自动驾驶算法(十):多项式轨迹与Minimun Snap闭式求解原理及代码讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/650189

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++