Python实现基于多元线性回归模型进行统计学相互作用和方差分析(anova算法)项目实战

本文主要是介绍Python实现基于多元线性回归模型进行统计学相互作用和方差分析(anova算法)项目实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

多元线性回归模型(Multiple Linear Regression Model)是一种统计学方法,用于研究一个或多个自变量(predictors)与因变量(dependent variable)之间的关系。在模型中,因变量的值通过一个线性函数来预测,该函数包含了自变量的系数和截距项。

相互作用(Interaction)是指模型中的两个或多个自变量之间存在一种依赖关系,即一个自变量对因变量的影响程度取决于另一个自变量的取值。在多元线性回归中,如果存在显著的交互效应,意味着简单的主效应并不能完全描述自变量对因变量的影响,需要考虑自变量之间的联合效应。

例如,在一个包含两个自变量 X1 和 X2 的模型中,可能存在一个交互项 X1*X2。这意味着对于给定的 X1 值,X2 对因变量的影响可能随着 X1 的变化而变化,反之亦然。

方差分析(ANOVA,Analysis of Variance)在多元线性回归模型中主要用于检验不同组别或条件下的均值差异是否显著。当模型包含分类变量,并且我们想探究这些分类变量的不同水平(或它们与其他连续变量的交互作用)是否对因变量有显著影响时,可以使用方差分析。

在多元线性回归框架下,可以通过 F 检验或者anova表来评估各个自变量、交互项以及误差项对总变异性贡献的显著性。这样就可以确定哪些自变量及其交互项对因变量有显著影响,并进一步解释模型的预测能力。

本项目通过OLS回归算法来构建线性回归模型进行统计学相互作用和方差分析。 

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

S

工资

2

X

经验(年)

3

E

教育(1=学士,2=硕士,3=博士)

4

M

管理(1=管理,0=非管理)

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

  

从上图可以看到,总共有4个变量,数据中无缺失值,共46条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析

4.1 变量直方图

用Matplotlib工具的hist()方法绘制直方图:

   从上图可以看到,变量主要集中在12500~27500之间。

4.2 相关性分析

     从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

4.3 绘制散点图

5.构建线性回归模型

主要使用OLS回归算法,用于目标回归。

5.1 构建模型

编号

模型名称

参数

1

OLS回归模型

默认参数

5.2 模型摘要信息

5.3 影响力摘要信息

影响力指标部分数据展示:

5.4 残差散点图

5.5 模型摘要信息

把"E" 和 "X" 的乘积作为模型的一个特征项,进行建模。

5.6 方差分析结果

5.7 模型摘要信息

把"E" 和 "M" 的乘积作为模型的一个特征项,进行建模。

5.8 方差分析结果

5.9 学生化残差散点图

6.模型评估

6.1 模型摘要信息

E、 X 、 M三个特征建模。

6.2 模型摘要信息

把"E" 和 "X" 的乘积作为模型的一个特征项,进行建模。

6.3 方差分析结果

6.4 模型摘要信息

把"E" 和 "M" 的乘积作为模型的一个特征项,进行建模。

6.5 方差分析结果

6.6 标准残差散点图

6.7 特征散点图

6.8 相互作用图

7.结论与展望

综上所述,本文采用了OLS算法来构建回归模型进行方差分析和相互作用分析,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 获取方式一:# 项目实战合集导航:https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2# 获取方式二:链接:https://pan.baidu.com/s/1JJoLP6MbnJXAnBrpjRpNHA 
提取码:vnqh

这篇关于Python实现基于多元线性回归模型进行统计学相互作用和方差分析(anova算法)项目实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/630328

相关文章

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

springboot项目如何开启https服务

《springboot项目如何开启https服务》:本文主要介绍springboot项目如何开启https服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录springboot项目开启https服务1. 生成SSL证书密钥库使用keytool生成自签名证书将

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2