DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional或Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测

本文主要是介绍DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional或Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional或Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测

目录

利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测

输出结果

设计思路

核心代码

利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测

输出结果

设计思路

核心代码


利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测

输出结果

下边两张图对应查看,可知,数字0有965个是被准确识别到!

1.10.0
Size of:
- Training-set:		55000
- Validation-set:	5000
- Test-set:		10000
Epoch 1/1128/55000 [..............................] - ETA: 14:24 - loss: 2.3439 - acc: 0.0938256/55000 [..............................] - ETA: 14:05 - loss: 2.2695 - acc: 0.1016384/55000 [..............................] - ETA: 13:20 - loss: 2.2176 - acc: 0.1302512/55000 [..............................] - ETA: 13:30 - loss: 2.1608 - acc: 0.2109640/55000 [..............................] - ETA: 13:29 - loss: 2.0849 - acc: 0.2500768/55000 [..............................] - ETA: 13:23 - loss: 2.0309 - acc: 0.2734896/55000 [..............................] - ETA: 13:30 - loss: 1.9793 - acc: 0.29461024/55000 [..............................] - ETA: 13:23 - loss: 1.9105 - acc: 0.33691152/55000 [..............................] - ETA: 13:22 - loss: 1.8257 - acc: 0.3776
……
53760/55000 [============================>.] - ETA: 18s - loss: 0.2106 - acc: 0.9329
53888/55000 [============================>.] - ETA: 16s - loss: 0.2103 - acc: 0.9330
54016/55000 [============================>.] - ETA: 14s - loss: 0.2100 - acc: 0.9331
54144/55000 [============================>.] - ETA: 13s - loss: 0.2096 - acc: 0.9333
54272/55000 [============================>.] - ETA: 11s - loss: 0.2092 - acc: 0.9334
54400/55000 [============================>.] - ETA: 9s - loss: 0.2089 - acc: 0.9335 
54528/55000 [============================>.] - ETA: 7s - loss: 0.2086 - acc: 0.9336
54656/55000 [============================>.] - ETA: 5s - loss: 0.2082 - acc: 0.9337
54784/55000 [============================>.] - ETA: 3s - loss: 0.2083 - acc: 0.9337
54912/55000 [============================>.] - ETA: 1s - loss: 0.2082 - acc: 0.9337
55000/55000 [==============================] - 837s 15ms/step - loss: 0.2080 - acc: 0.933832/10000 [..............................] - ETA: 21s160/10000 [..............................] - ETA: 8s 288/10000 [..............................] - ETA: 6s448/10000 [>.............................] - ETA: 5s576/10000 [>.............................] - ETA: 5s736/10000 [=>............................] - ETA: 4s864/10000 [=>............................] - ETA: 4s1024/10000 [==>...........................] - ETA: 4s1152/10000 [==>...........................] - ETA: 4s1312/10000 [==>...........................] - ETA: 4s1440/10000 [===>..........................] - ETA: 4s1600/10000 [===>..........................] - ETA: 3s1728/10000 [====>.........................] - ETA: 3s
……3008/10000 [========>.....................] - ETA: 3s3168/10000 [========>.....................] - ETA: 3s3296/10000 [========>.....................] - ETA: 3s3456/10000 [=========>....................] - ETA: 2s
……5248/10000 [==============>...............] - ETA: 2s5376/10000 [===============>..............] - ETA: 2s5536/10000 [===============>..............] - ETA: 2s5664/10000 [===============>..............] - ETA: 1s5792/10000 [================>.............] - ETA: 1s
……7360/10000 [=====================>........] - ETA: 1s7488/10000 [=====================>........] - ETA: 1s7648/10000 [=====================>........] - ETA: 1s7776/10000 [======================>.......] - ETA: 1s7936/10000 [======================>.......] - ETA: 0s8064/10000 [=======================>......] - ETA: 0s8224/10000 [=======================>......] - ETA: 0s
……9760/10000 [============================>.] - ETA: 0s9920/10000 [============================>.] - ETA: 0s
10000/10000 [==============================] - 4s 449us/step
loss 0.05686537345089018
acc 0.982
acc: 98.20%
[[ 965    0    4    0    0    0    4    1    2    4][   0 1128    3    0    0    0    0    1    3    0][   0    0 1028    0    0    0    0    1    3    0][   0    0   10  991    0    2    0    2    3    2][   0    0    3    0  967    0    1    1    1    9][   2    0    1    7    1  863    5    1    4    8][   2    3    0    0    3    2  946    0    2    0][   0    1   17    1    1    0    0  987    2   19][   2    0    9    2    0    1    0    1  955    4][   1    4    3    2    8    0    0    0    1  990]]_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         (None, 784)               0         
_________________________________________________________________
reshape (Reshape)            (None, 28, 28, 1)         0         
_________________________________________________________________
layer_conv1 (Conv2D)         (None, 28, 28, 16)        416       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 14, 14, 16)        0         
_________________________________________________________________
layer_conv2 (Conv2D)         (None, 14, 14, 36)        14436     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 7, 7, 36)          0         
_________________________________________________________________
flatten (Flatten)            (None, 1764)              0         
_________________________________________________________________
dense (Dense)                (None, 128)               225920    
_________________________________________________________________
dense_1 (Dense)              (None, 10)                1290      
=================================================================
Total params: 242,062
Trainable params: 242,062
Non-trainable params: 0
_________________________________________________________________
(5, 5, 1, 16)
(1, 28, 28, 16)

设计思路

核心代码

后期更新……

path_model = 'Functional_model.keras'  from tensorflow.python.keras.models import load_model  
model2_1 = load_model(path_model)      model_weights_path = 'Functional_model_weights.keras'
model2_1.save_weights(model_weights_path )                  
model2_1.load_weights(model_weights_path, by_name=True ) 
model2_1.load_weights(model_weights_path)  result = model.evaluate(x=data.x_test,y=data.y_test)for name, value in zip(model.metrics_names, result):print(name, value)
print("{0}: {1:.2%}".format(model.metrics_names[1], result[1]))y_pred = model.predict(x=data.x_test) 
cls_pred = np.argmax(y_pred, axis=1)   
plot_example_errors(cls_pred)        
plot_confusion_matrix(cls_pred)     images = data.x_test[0:9]                      
cls_true = data.y_test_cls[0:9]                 
y_pred = model.predict(x=images)               
cls_pred = np.argmax(y_pred, axis=1)            
title = 'MNIST(Sequential Model): plot predicted example, resl VS predict'
plot_images(title, images=images,               cls_true=cls_true,cls_pred=cls_pred)

利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测

输出结果

1.10.0
Size of:
- Training-set:		55000
- Validation-set:	5000
- Test-set:		10000
Epoch 1/1128/55000 [..............................] - ETA: 15:39 - loss: 2.3021 - acc: 0.0703256/55000 [..............................] - ETA: 13:40 - loss: 2.2876 - acc: 0.1172384/55000 [..............................] - ETA: 14:24 - loss: 2.2780 - acc: 0.1328512/55000 [..............................] - ETA: 13:57 - loss: 2.2613 - acc: 0.1719640/55000 [..............................] - ETA: 13:57 - loss: 2.2414 - acc: 0.1828768/55000 [..............................] - ETA: 13:58 - loss: 2.2207 - acc: 0.2135896/55000 [..............................] - ETA: 14:01 - loss: 2.1926 - acc: 0.24671024/55000 [..............................] - ETA: 13:34 - loss: 2.1645 - acc: 0.27251152/55000 [..............................] - ETA: 13:38 - loss: 2.1341 - acc: 0.29691280/55000 [..............................] - ETA: 13:40 - loss: 2.0999 - acc: 0.32731408/55000 [..............................] - ETA: 13:37 - loss: 2.0555 - acc: 0.3629
……
54016/55000 [============================>.] - ETA: 15s - loss: 0.2200 - acc: 0.9350
54144/55000 [============================>.] - ETA: 13s - loss: 0.2198 - acc: 0.9350
54272/55000 [============================>.] - ETA: 11s - loss: 0.2194 - acc: 0.9351
54400/55000 [============================>.] - ETA: 9s - loss: 0.2191 - acc: 0.9352 
54528/55000 [============================>.] - ETA: 7s - loss: 0.2189 - acc: 0.9352
54656/55000 [============================>.] - ETA: 5s - loss: 0.2185 - acc: 0.9354
54784/55000 [============================>.] - ETA: 3s - loss: 0.2182 - acc: 0.9354
54912/55000 [============================>.] - ETA: 1s - loss: 0.2180 - acc: 0.9355
55000/55000 [==============================] - 863s 16ms/step - loss: 0.2177 - acc: 0.935632/10000 [..............................] - ETA: 22s160/10000 [..............................] - ETA: 8s 288/10000 [..............................] - ETA: 6s416/10000 [>.............................] - ETA: 5s544/10000 [>.............................] - ETA: 5s672/10000 [=>............................] - ETA: 5s800/10000 [=>............................] - ETA: 5s928/10000 [=>............................] - ETA: 4s1056/10000 [==>...........................] - ETA: 4s1184/10000 [==>...........................] - ETA: 4s1312/10000 [==>...........................] - ETA: 4s1440/10000 [===>..........................] - ETA: 4s
……9088/10000 [==========================>...] - ETA: 0s9216/10000 [==========================>...] - ETA: 0s9344/10000 [===========================>..] - ETA: 0s9472/10000 [===========================>..] - ETA: 0s9600/10000 [===========================>..] - ETA: 0s9728/10000 [============================>.] - ETA: 0s9856/10000 [============================>.] - ETA: 0s9984/10000 [============================>.] - ETA: 0s
10000/10000 [==============================] - 5s 489us/step
loss 0.060937872195523234
acc 0.9803
acc: 98.03%
[[ 963    0    0    1    1    0    4    1    4    6][   0 1128    0    2    0    1    2    0    2    0][   2    9 1006    1    1    0    0    3   10    0][   1    0    2  995    0    3    0    5    2    2][   0    1    0    0  977    0    0    1    0    3][   2    0    0    7    0  874    3    1    1    4][   2    3    0    0    6    1  943    0    3    0][   0    5    7    3    1    1    0  990    1   20][   4    1    3    3    2    1    7    2  944    7][   4    6    0    4    9    1    0    1    1  983]]

设计思路

后期更新……

核心代码

后期更新……

result = model.evaluate(x=data.x_test,y=data.y_test)for name, value in zip(model.metrics_names, result):print(name, value)
print("{0}: {1:.2%}".format(model.metrics_names[1], result[1]))y_pred = model.predict(x=data.x_test) 
cls_pred = np.argmax(y_pred, axis=1)   
plot_example_errors(cls_pred)        
plot_confusion_matrix(cls_pred)     images = data.x_test[0:9]                      
cls_true = data.y_test_cls[0:9]                 
y_pred = model.predict(x=images)               
cls_pred = np.argmax(y_pred, axis=1)            
title = 'MNIST(Sequential Model): plot predicted example, resl VS predict'
plot_images(title, images=images,               cls_true=cls_true,cls_pred=cls_pred)

这篇关于DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional或Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/629675

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu