AI智能客服系列1-python基于Keras实现翻译系统/聊天机器人Seq2Seq模型+attention(理论篇-图文详解)智能对话系统专辑《一》

本文主要是介绍AI智能客服系列1-python基于Keras实现翻译系统/聊天机器人Seq2Seq模型+attention(理论篇-图文详解)智能对话系统专辑《一》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对话机器人是最近一个热门话题,许多公司都在开发自己的智能客服系统,笔者将围绕智能对话、智能翻译系统整理出核心技术模型的原理和实战代码详解,撰写【智能聊天机器人技术专辑篇】。
此篇是:【智能客服对话系统专辑:《一、理论篇-核心技术模型原理图文分解》】

下面我们先来看下聊天机器人的神仙组合模型Seq2Seq+attention起源:
Seq2Seq 于 2013年、2014 年被多位学者共同提出,在机器翻译任务中取得了非常显著的效果,随后提出的 attention 模型更是将 Seq2Seq推上了神坛,Seq2Seq+attention 的组合横扫了非常多的任务,只需要给定足够数量的 input-output pairs,通过设计两端的 sequence 模型和 attention 模型,就可以训练出一个不错的模型。除了应用在机器翻译任务中,其他很多的文本生成任务都可以基于 Seq2Seq 模型来做,比如:文本摘要生成、对话生成等。

一、seq2seq模型原理:

seq2seq简单来说就是编码+解码器,把一个语言序列翻译成另一种语言序列,整个处理过程主要使用深度神经网络( LSTM (长短记忆网络)。脑补小时候看抗日大片地道战时,一边是编码发送情报,一边是接收情报用特定的模型进行解码,保证信息不被截胡,不过基本最后都会被我党机智神勇侦破。所以我们最重要的就是理解清楚,这背后的核心原理和模型。

在这里插入图片描述
接收输入序列"A B C EOS ( EOS=End of Sentence,句末标记)", 在这个过程中每一个时间点接收一个词或者字,并在读取的EOS时终止接受输入,最后输出一个向量作为输入序列的语义表示向量,这一过程也被称为编码(Encoder)过程,而第二个神经网络接收到第一个神经网络产生的输出向量后输出相应的输出语义向量,并且在这个时候每一个时刻输出词的概率都与前一个时刻的输出有关系,模型会将这些序列一次映射为"W X Y Z EOS",这一过程也被称为解码 (Decoder)过程,这样就实现了句子的翻译过程。整个过程的结构就像下图一样:
在这里插入图片描述
在这里插入图片描述
1.输入文本处理-词向量化:word embedding (输入文本词向量表达,这里有多种方法,TFIDF、Word2vec、GPT、ELMO、当然了目前ebedding中横扫各个大奖的还应当是BERT,至于BERT为什么夺冠,原理和实战代码,请访问之前写的文章里有详细介绍和代码实战,直通车BERT原理与实战代码。)
2.编码解码处理模型-LSTM:
如果此处你想不起来LSTM原理,下面附加简单介绍,帮你复习下:
2.1RNN弊端与LSTM高明之处
2.1.1先从理解

这篇关于AI智能客服系列1-python基于Keras实现翻译系统/聊天机器人Seq2Seq模型+attention(理论篇-图文详解)智能对话系统专辑《一》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/621896

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v