《原始论文:Sequence to Sequence Learning with Neural Networks》 Seq2Seq模型是将一个序列信号,通过“编码&解码”生成一个新的序列信号,通常用于机器翻译、语音识别、自动对话等任务。 Seq2Seq(多层LSTM-多层LSTM)+Attention架构是Transformer提出之前最好的序列生成模型。 我们之前遇到的较为熟悉的序列问题,
我们之前遇到的较为熟悉的序列问题,主要是利用一系列输入序列构建模型,预测某一种情况下的对应取值或者标签,在数学上的表述也就是通过一系列形如 X i = ( x 1 , x 2 , . . . , x n ) \textbf{X}_i=(x_1,x_2,...,x_n) Xi=(x1,x2,...,xn) 的向量序列来预测 Y Y Y 值,这类的问题的共同特点是,输入可以是一个定长或者不
文章目录 循环神经网络(Recurrent Neural Network,RNN)最基本的单层神经网络经典的RNN结构(N vs N)RNN变体(N vs 1)RNN变体(1 vs N) 序列到序列(Sequence to Sequence,Seq2Seq)注意力机制(Attention)Attention 的优点Attention 的缺点Attention可视化 循环神经网
Get To The Point: Summarization with Pointer-Generator Networks Abigail See, Peter J. Liu, Christopher D. Manning Standford University & Google Brain, 2017 这是ACL2017上的一篇文章,提出了coverage机制,目的是为了解决seq2