自然语言处理-应用场景-聊天机器人(二):Seq2Seq【CHAT/闲聊机器人】--> BeamSearch算法预测【替代 “维特比算法” 预测、替代 “贪心算法” 预测】

本文主要是介绍自然语言处理-应用场景-聊天机器人(二):Seq2Seq【CHAT/闲聊机器人】--> BeamSearch算法预测【替代 “维特比算法” 预测、替代 “贪心算法” 预测】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在项目准备阶段我们知道,用户说了一句话后,会判断其意图,如果是想进行闲聊,那么就会调用闲聊模型返回结果。

目前市面上的常见闲聊机器人有微软小冰这种类型的模型,很久之前还有小黄鸡这种体验更差的模型

常见的闲聊模型都是一种seq2seq的结构。

一、准备训练数据

单轮次的聊天数据非常不好获取,所以这里我们从github上使用一些开放的数据集来训练我们的闲聊模型

数据地址:https://github.com/codemayq/chaotbot_corpus_Chinese

主要的数据有两个:

  1. 小黄鸡的聊天语料:噪声很大
    在这里插入图片描述
  2. 微博的标题和评论:质量相对较高
    在这里插入图片描述
    在这里插入图片描述

二、数据的处理和保存

由于数据中存到大量的噪声,可以对其进行基础的处理,然后分别把input和target使用两个文件保存,即input.txt文件中的第N行为“问”,target.txt文件中的第N行为“答”

  • 会把“以单个字分词后的句子”作为特征值、目标值(存放在input_word.txt、target_word.txt),
  • 把“以词语分词后的句子”作为特征值、目标值(存放在input.txt、target.txt)

1、小黄鸡的语料的处理

def format_xiaohuangji_corpus(word=False):"""处理小黄鸡的语料"""if word:corpus_path = "./chatbot/corpus/xiaohuangji50w_nofenci.conv"input_path = "./chatbot/corpus/input_word.txt"output_path = "./chatbot/corpus/output_word.txt"else:corpus_path = "./chatbot/corpus/xiaohuangji50w_nofenci.conv"input_path = "./chatbot/corpus/input.txt"output_path = "./chatbot/corpus/output.txt"f_input = open(input_path,"a")f_output = open(output_path,"a")pair = []for line in tqdm(open(corpus_path),ascii=True):if line.strip() == "E":if not pair:continueelse:assert len(pair) == 2,"长度必须是2"if len(pair[0].strip())>=1 and len(pair[1].strip())>=1:f_input.write(pair[0]+"\n")f_output.write(pair[1]+"\n")pair = []elif line.startswith("M"):line = line[1:]if word:pair.append(" ".join(list(line.strip())))else:pair.append(" ".join(jieba_cut(line.strip())))

详细版:

"""
处理闲聊机器人的语料
"""
import re
from utils import cut
from tqdm import tqdmdef clean_line(line):"""处理句子中的标点符号"""line = re.sub("\^.*?\^","\^***\^",line)line = re.sub("\(.*?\)","\(***\)",line)result = []  #【【】,【】,[word,True,False],[word,True]】temp =""for word in line:if word.isalpha() or word.isdigit():if len(temp)>0:result.append([temp,True])temp = "" #如果temp里面只有一个字符result.append([word,False])else:temp += wordif len(temp) > 0:result.append([temp, True])#把result中第二个位置为True的进行替换if result[0][-1]:result = result[1:]#经过上一步后,有可能为空列表if len(result)>0:if result[-1][-1]:result = result[:-1]+[["。",False]]final_result = []for i in result:if i[-1]: #为标点的情况if "!" in i[0] or "!" in i[0]:final_result.append(["!",False])elif "…" in i[0]:final_result.append(["…", False])else:final_result.append([",",False])else:final_result.append(i)return "".join([i[0] for i in final_result])def clean_group(group):"""清理group中的输出:param group: [q,a]:return: [q,a]/bool"""#判断句子是否为纯标点英文数字,或者是其他的语言--》判断一句话中是否有中文if not re.findall("[\u4e00-\u9fa5]",group[0]):return Falseif not re.findall("[\u4e00-\u9fa5]",group[1]):return False#问题中包含`笑话`两个字的if re.findall("笑话|糗百|运势|运程",group[0]):return False#处理连续的多个标点group[0] = clean_line(group[0])group[1] = clean_line(group[1])#小黄鸡,小通group[0] = re.sub("小通|鸡鸡","小智",group[0]).strip()group[1] = re.sub("小通|鸡鸡","小智",group[1]).strip()#判断句子是否为空if len(group[0])<1 or len(group[1])<1:return Falsereturn groupdef save_group(group,fq,fa,by_word):"""保存问答对"""fq.write(" ".join(cut(group[0],by_word=by_word))+"\n")fa.write(" ".join(cut(group[1],by_word=by_word))+"\n")def process_xiaohuangji(by_word,fq,fa):data_path = "./corpus/classify/小黄鸡未分词.conv"groups = []  #[[q,a],[q,a],[q,a]]group = []bar = tqdm(open(data_path).readlines(),desc="小黄鸡数据读取...")for line in bar:if line.startswith("E"):if group:groups.append(group)group = []elif line.startswith("M"):group.append(line[1:].strip())if group:groups.append(group)for group in tqdm(groups,desc="小黄鸡数据保存..."):  #一个group就是一个问答对group = clean_group(group)if not group:continue# print("q:",group[0])# print("a:",group[1])# print("*"*30)save_group(group,fq,fa,by_word)def start_process(by_word=True):fq = open("./corpus/chatbot/input.txt","a")	# 特征值保存路径fa = open("./corpus/chatbot/target.txt","a") # 目标值保存路径process_xiaohuangji(by_word,fq,fa)if __name__=="__main__":start_process()

2、微博语料的处理

def format_weibo(word=False):"""微博数据存在一些噪声,未处理:return:"""if word:origin_input = "./chatbot/corpus/stc_weibo_train_post"input_path = "./chatbot/corpus/input_word.txt"origin_output = "./chatbot/corpus/stc_weibo_train_response"output_path = "./chatbot/corpus/output_word.txt"else:origin_input = "./chatbot/corpus/stc_weibo_train_post"input_path = "./chatbot/corpus/input.txt"origin_output = "./chatbot/corpus/stc_weibo_train_response"output_path = "./chatbot/corpus/output.txt"f_input = open(input_path,"a")f_output = open(output_path, "a")with open(origin_input) as in_o,open(origin_output) as out_o:for _in,_out in tqdm(zip(in_o,out_o),ascii=True):_in = _in.strip()_out = _out.strip()if _in.endswith(")") or _in.endswith("」") or _in.endswith(")"):_in = re.sub("(.*)|「.*?」|\(.*?\)"," ",_in)_in = re.sub("我在.*?alink|alink|(.*?\d+x\d+.*?)|#|】|【|-+|_+|via.*?:*.*"," ",_in)_in = re.sub("\s+"," ",_in)if len(_in)<1 or len(_out

这篇关于自然语言处理-应用场景-聊天机器人(二):Seq2Seq【CHAT/闲聊机器人】--> BeamSearch算法预测【替代 “维特比算法” 预测、替代 “贪心算法” 预测】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128866

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig