自然语言处理-应用场景-聊天机器人(二):Seq2Seq【CHAT/闲聊机器人】--> BeamSearch算法预测【替代 “维特比算法” 预测、替代 “贪心算法” 预测】

本文主要是介绍自然语言处理-应用场景-聊天机器人(二):Seq2Seq【CHAT/闲聊机器人】--> BeamSearch算法预测【替代 “维特比算法” 预测、替代 “贪心算法” 预测】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在项目准备阶段我们知道,用户说了一句话后,会判断其意图,如果是想进行闲聊,那么就会调用闲聊模型返回结果。

目前市面上的常见闲聊机器人有微软小冰这种类型的模型,很久之前还有小黄鸡这种体验更差的模型

常见的闲聊模型都是一种seq2seq的结构。

一、准备训练数据

单轮次的聊天数据非常不好获取,所以这里我们从github上使用一些开放的数据集来训练我们的闲聊模型

数据地址:https://github.com/codemayq/chaotbot_corpus_Chinese

主要的数据有两个:

  1. 小黄鸡的聊天语料:噪声很大
    在这里插入图片描述
  2. 微博的标题和评论:质量相对较高
    在这里插入图片描述
    在这里插入图片描述

二、数据的处理和保存

由于数据中存到大量的噪声,可以对其进行基础的处理,然后分别把input和target使用两个文件保存,即input.txt文件中的第N行为“问”,target.txt文件中的第N行为“答”

  • 会把“以单个字分词后的句子”作为特征值、目标值(存放在input_word.txt、target_word.txt),
  • 把“以词语分词后的句子”作为特征值、目标值(存放在input.txt、target.txt)

1、小黄鸡的语料的处理

def format_xiaohuangji_corpus(word=False):"""处理小黄鸡的语料"""if word:corpus_path = "./chatbot/corpus/xiaohuangji50w_nofenci.conv"input_path = "./chatbot/corpus/input_word.txt"output_path = "./chatbot/corpus/output_word.txt"else:corpus_path = "./chatbot/corpus/xiaohuangji50w_nofenci.conv"input_path = "./chatbot/corpus/input.txt"output_path = "./chatbot/corpus/output.txt"f_input = open(input_path,"a")f_output = open(output_path,"a")pair = []for line in tqdm(open(corpus_path),ascii=True):if line.strip() == "E":if not pair:continueelse:assert len(pair) == 2,"长度必须是2"if len(pair[0].strip())>=1 and len(pair[1].strip())>=1:f_input.write(pair[0]+"\n")f_output.write(pair[1]+"\n")pair = []elif line.startswith("M"):line = line[1:]if word:pair.append(" ".join(list(line.strip())))else:pair.append(" ".join(jieba_cut(line.strip())))

详细版:

"""
处理闲聊机器人的语料
"""
import re
from utils import cut
from tqdm import tqdmdef clean_line(line):"""处理句子中的标点符号"""line = re.sub("\^.*?\^","\^***\^",line)line = re.sub("\(.*?\)","\(***\)",line)result = []  #【【】,【】,[word,True,False],[word,True]】temp =""for word in line:if word.isalpha() or word.isdigit():if len(temp)>0:result.append([temp,True])temp = "" #如果temp里面只有一个字符result.append([word,False])else:temp += wordif len(temp) > 0:result.append([temp, True])#把result中第二个位置为True的进行替换if result[0][-1]:result = result[1:]#经过上一步后,有可能为空列表if len(result)>0:if result[-1][-1]:result = result[:-1]+[["。",False]]final_result = []for i in result:if i[-1]: #为标点的情况if "!" in i[0] or "!" in i[0]:final_result.append(["!",False])elif "…" in i[0]:final_result.append(["…", False])else:final_result.append([",",False])else:final_result.append(i)return "".join([i[0] for i in final_result])def clean_group(group):"""清理group中的输出:param group: [q,a]:return: [q,a]/bool"""#判断句子是否为纯标点英文数字,或者是其他的语言--》判断一句话中是否有中文if not re.findall("[\u4e00-\u9fa5]",group[0]):return Falseif not re.findall("[\u4e00-\u9fa5]",group[1]):return False#问题中包含`笑话`两个字的if re.findall("笑话|糗百|运势|运程",group[0]):return False#处理连续的多个标点group[0] = clean_line(group[0])group[1] = clean_line(group[1])#小黄鸡,小通group[0] = re.sub("小通|鸡鸡","小智",group[0]).strip()group[1] = re.sub("小通|鸡鸡","小智",group[1]).strip()#判断句子是否为空if len(group[0])<1 or len(group[1])<1:return Falsereturn groupdef save_group(group,fq,fa,by_word):"""保存问答对"""fq.write(" ".join(cut(group[0],by_word=by_word))+"\n")fa.write(" ".join(cut(group[1],by_word=by_word))+"\n")def process_xiaohuangji(by_word,fq,fa):data_path = "./corpus/classify/小黄鸡未分词.conv"groups = []  #[[q,a],[q,a],[q,a]]group = []bar = tqdm(open(data_path).readlines(),desc="小黄鸡数据读取...")for line in bar:if line.startswith("E"):if group:groups.append(group)group = []elif line.startswith("M"):group.append(line[1:].strip())if group:groups.append(group)for group in tqdm(groups,desc="小黄鸡数据保存..."):  #一个group就是一个问答对group = clean_group(group)if not group:continue# print("q:",group[0])# print("a:",group[1])# print("*"*30)save_group(group,fq,fa,by_word)def start_process(by_word=True):fq = open("./corpus/chatbot/input.txt","a")	# 特征值保存路径fa = open("./corpus/chatbot/target.txt","a") # 目标值保存路径process_xiaohuangji(by_word,fq,fa)if __name__=="__main__":start_process()

2、微博语料的处理

def format_weibo(word=False):"""微博数据存在一些噪声,未处理:return:"""if word:origin_input = "./chatbot/corpus/stc_weibo_train_post"input_path = "./chatbot/corpus/input_word.txt"origin_output = "./chatbot/corpus/stc_weibo_train_response"output_path = "./chatbot/corpus/output_word.txt"else:origin_input = "./chatbot/corpus/stc_weibo_train_post"input_path = "./chatbot/corpus/input.txt"origin_output = "./chatbot/corpus/stc_weibo_train_response"output_path = "./chatbot/corpus/output.txt"f_input = open(input_path,"a")f_output = open(output_path, "a")with open(origin_input) as in_o,open(origin_output) as out_o:for _in,_out in tqdm(zip(in_o,out_o),ascii=True):_in = _in.strip()_out = _out.strip()if _in.endswith(")") or _in.endswith("」") or _in.endswith(")"):_in = re.sub("(.*)|「.*?」|\(.*?\)"," ",_in)_in = re.sub("我在.*?alink|alink|(.*?\d+x\d+.*?)|#|】|【|-+|_+|via.*?:*.*"," ",_in)_in = re.sub("\s+"," ",_in)if len(_in)<1 or len(_out

这篇关于自然语言处理-应用场景-聊天机器人(二):Seq2Seq【CHAT/闲聊机器人】--> BeamSearch算法预测【替代 “维特比算法” 预测、替代 “贪心算法” 预测】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128866

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使