自然语言专题

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)

Level3 — PART 3 — 自然语言处理与文本分析

目录 自然语言处理概要 分词与词性标注 N-Gram 分词 分词及词性标注的难点 法则式分词法 全切分 FMM和BMM Bi-direction MM 优缺点 统计式分词法 N-Gram概率模型 HMM概率模型 词性标注(Part-of-Speech Tagging) HMM 文本挖掘概要 信息检索(Information Retrieval) 全文扫描 关键词

基于Python的自然语言处理系列(1):Word2Vec

在自然语言处理(NLP)领域,Word2Vec是一种广泛使用的词向量表示方法。它通过将词汇映射到连续的向量空间中,使得计算机可以更好地理解和处理文本数据。本系列的第一篇文章将详细介绍Word2Vec模型的原理、实现方法及应用场景。 1. Word2Vec 原理         Word2Vec模型由Google的Tomas Mikolov等人在2013年提出,主要有两种训练方式

自然语言处理系列六十三》神经网络算法》LSTM长短期记忆神经网络算法

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列六十三神经网络算法》LSTM长短期记忆神经网络算法Seq2Seq端到端神经网络算法 总结 自然语言处理系列六十三 神经网络算法》LSTM长短期记忆神经网络算法 长短期记忆网络(LSTM,Long S

【自然语言处理】第一章绪论

第一章 绪论 文章目录 第一章 绪论1. 什么是自然语言2. 自然语言处理的定义2.1 自然语言处理NLP2.2 计算语言学CL2.3 NLP与CL 3. 自然语言处理的研究内容3.1 研究对象3.2 研究层次3.3 研究问题3.4 研究内容3.4.1 资源建设3.4.2 基础研究3.4.3 应用技术研究3.4.4 应用系统 4. 自然语言处理的流派5. 自然语言处理的挑战

【自然语言处理 数据清洗】清洗文本中html标签

一段本文中既有文字,又有很多html标签,很乱,需要进行清洗,下面是用python 进行过滤辣鸡html的脚本。 # -*- coding:utf-8 -*-import pandas as pdimport reimport jiebadef filter_tags(htmlstr):"""# Python通过正则表达式去除(过滤)HTML标签:param htmlstr::return:"

【自然语言处理 词库建设】怎样将搜狗的细胞词库scel格式转化成txt格式

搜狗词库:https://pinyin.sogou.com/dict/ 1、先下载搜狗词库到本地,文件格式为.scel后缀 2、利用python3 自动转换成txt python3版本: # -*- coding:utf-8 -*-import structimport os# 由于原代码不适用python3且有大量bug# 以及有函数没有必要使用且一些代码书写不太规范或冗余#在原有

从基础到前沿:基于Python的自然语言处理系列介绍

在数据驱动的时代,自然语言处理(NLP)已成为理解和利用文本数据的关键技术。为了帮助大家深入掌握NLP技术,我将启动一个新的系列——“基于Python的自然语言处理系列”。这个系列将涵盖从基础概念到前沿技术的广泛内容,旨在帮助开发者和数据科学方向使用者全面了解和应用NLP技术。 系列概述 1. 基础知识         在这一部分,我们将探讨NLP的基本概念和技术,包括词

自然语言处理系列六十一》分布式深度学习实战》TensorFlow深度学习框架

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列六十一分布式深度学习实战》TensorFlow深度学习框架安装和部署过程 总结 自然语言处理系列六十一 分布式深度学习实战》TensorFlow深度学习框架 TensorFlow作为最流行的深度学习

Chainlit结合百度飞浆的ocr识别和nlp自然语言处理做图片文字信息提取

PP飞桨简介 PaddlePaddle(PArallel Distributed Deep LEarning),是由百度公司开发的一款开源深度学习平台,支持动态和静态图模式,提供了从模型构建到训练、预测等一系列的功能。PaddlePaddle 的设计目标是让开发者能够更容易地实现、训练和部署自己的深度学习模型。它支持多种操作系统,并提供了多种编程接口,包括 Python 和 C++。 Pad

自然语言处理系列五十三》文本聚类算法》文本聚类介绍及相关算法

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列五十三文本聚类算法》文本聚类介绍及相关算法K-means文本聚类算法原理 总结 自然语言处理系列五十三 文本聚类算法》文本聚类介绍及相关算法 分类和聚类都是文本挖掘中常使用的方法,他们的目的都是将相

自然语言处理领域的两大巨头,谁将引领未来?

在探索自然语言处理(NLP)及更广泛的人工智能(AI)领域的未来走向时,我们不得不将目光投向几个关键玩家:GPT-4o作为OpenAI的杰作,Llama作为Meta(原Facebook)的力作,以及那些正迅速崭露头角的新兴力量。 这两者各自拥有独特的优势,并将在未来的发展中扮演至关重要的角色。 本文将从专业角度出发,深入分析GPT-4o与Llama(由Meta(原Facebook)开发的大

自然语言处理系列五十二》文本分类算法》BERT模型算法原理及文本分类

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列五十二文本分类算法》BERT模型算法原理及文本分类BERT中文文本分类代码实战 总结 自然语言处理系列五十二 文本分类算法》BERT模型算法原理及文本分类 BERT是2018年10月由Google

自然语言处理:第四十三章 视觉RAG:变革传统深度学习模型开发流程,开创下一代多模态视觉模型的新时代

文章链接:微信公众平台 (qq.com) 写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!! 写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!! 写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!! 我们相信视觉领域即将发生范式转变,从而产生计算机视觉管道 2.0,其中一些传统阶段(例如标记)将被可提示的基础模型所取代。 本文深入剖析了Vis

自然语言处理系列五十》文本分类算法》SVM支持向量机算法原理

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列五十SVM支持向量机》算法原理SVM支持向量机》代码实战 总结 自然语言处理系列五十 SVM支持向量机》算法原理 SVM支持向量机在文本分类的应用场景中,相比其他机器学习算法有更好的效果。下面介绍其

人工智能-机器学习-深度学习-自然语言处理(NLP)-生成模型:Seq2Seq模型(Encoder-Decoder框架、Attention机制)

我们之前遇到的较为熟悉的序列问题,主要是利用一系列输入序列构建模型,预测某一种情况下的对应取值或者标签,在数学上的表述也就是通过一系列形如 X i = ( x 1 , x 2 , . . . , x n ) \textbf{X}_i=(x_1,x_2,...,x_n) Xi​=(x1​,x2​,...,xn​) 的向量序列来预测 Y Y Y 值,这类的问题的共同特点是,输入可以是一个定长或者不

自然语言处理(NLP)-预训练模型:别人已经训练好的模型,可直接拿来用【ELMO、BERT、ERNIE(中文版BERT)、GPT、XLNet...】

预训练模型(Pretrained model):一般情况下预训练模型都是大型模型,具备复杂的网络结构,众多的参数量,以及在足够大的数据集下进行训练而产生的模型. 在NLP领域,预训练模型往往是语言模型,因为语言模型的训练是无监督的,可以获得大规模语料,同时语言模型又是许多典型NLP任务的基础,如机器翻译,文本生成,阅读理解等,常见的预训练模型有BERT, GPT, roBERTa, transf

自然语言处理(NLP)-子词模型(Subword Models):BPE(Byte Pair Encoding)、WordPiece、ULM(Unigram Language Model)

在NLP任务中,神经网络模型的训练和预测都需要借助词表来对句子进行表示。传统构造词表的方法,是先对各个句子进行分词,然后再统计并选出频数最高的前N个词组成词表。通常训练集中包含了大量的词汇,以英语为例,总的单词数量在17万到100万左右。出于计算效率的考虑,通常N的选取无法包含训练集中的所有词。因而,这种方法构造的词表存在着如下的问题: 实际应用中,模型预测的词汇是开放的,对于未在词表中出现的词

自然语言处理-应用场景-问答系统(知识图谱)【离线:命名实体识别(BiLSTM+CRF>维特比算法预测)、命名实体审核(BERT+RNN);在线:句子相关性判断(BERT+DNN)】【Flask部署】

一、背景介绍 什么是智能对话系统? 随着人工智能技术的发展, 聊天机器人, 语音助手等应用在生活中随处可见, 比如百度的小度, 阿里的小蜜, 微软的小冰等等. 其目的在于通过人工智能技术让机器像人类一样能够进行智能回复, 解决现实中的各种问题. 从处理问题的角度来区分, 智能对话系统可分为: 任务导向型: 完成具有明确指向性的任务, 比如预定酒店咨询, 在线问诊等等.非任务导向型:

自然语言处理-应用场景-聊天机器人(三):MaLSTM【基于FAQ 的问答系统】【文本向量化-->问题召回(利用PySparNN句子相似度计算海选相似问题)-->问题排序(深度学习:句子相似度计算)】

一、问答机器人介绍 1. 问答机器人 在前面的课程中,我们已经对问答机器人介绍过,这里的问答机器人是我们在分类之后,对特定问题进行回答的一种机器人。至于回答的问题的类型,取决于我们的语料。 当前我们需要实现的问答机器人是一个回答编程语言(比如python是什么,python难么等)相关问题的机器人 2. 问答机器人的实现逻辑 主要实现逻辑:从现有的问答对中,选择出和问题最相似的问题,

自然语言处理-应用场景-聊天机器人(二):Seq2Seq【CHAT/闲聊机器人】--> BeamSearch算法预测【替代 “维特比算法” 预测、替代 “贪心算法” 预测】

在项目准备阶段我们知道,用户说了一句话后,会判断其意图,如果是想进行闲聊,那么就会调用闲聊模型返回结果。 目前市面上的常见闲聊机器人有微软小冰这种类型的模型,很久之前还有小黄鸡这种体验更差的模型 常见的闲聊模型都是一种seq2seq的结构。 一、准备训练数据 单轮次的聊天数据非常不好获取,所以这里我们从github上使用一些开放的数据集来训练我们的闲聊模型 数据地址:https://gi

自然语言处理-应用场景-文本生成:Seq2Seq --> 看图说话【将一张图片转为一段文本】

人工智能-自然语言处理(NLP)-应用场景-Seq2Seq:看图说话【将一张图片转为一段文本】

自然语言处理(NLP)-第三方库(工具包):Annoy 【向量最邻近检索工具】

自然语言处理(NLP)-第三方库(工具包):Annoy 【向量最邻近检索工具】 参考资料: 推荐系统的向量检索工具: Annoy & Faiss

自然语言处理(NLP)-第三方库(工具包):Faiss【向量最邻近检索工具】【为稠密向量提供高效相似度搜索】【多种索引构建方式,可根据硬件资源、数据量选择合适方式】【支持十亿级别向量的搜索】

一、Faiss介绍 Faiss是Facebook AI团队开源的针对聚类和相似性搜索库,为稠密向量提供高效相似度搜索和聚类,支持十亿级别向量的搜索,是目前最为成熟的近似近邻搜索库。它包含多种搜索任意大小向量集(备注:向量集大小由RAM内存决定)的算法,以及用于算法评估和参数调整的支持代码。Faiss用C++编写,并提供与Numpy完美衔接的Python接口。除此以外,对一些核心算法提供了GPU实