【自然语言处理 词库建设】怎样将搜狗的细胞词库scel格式转化成txt格式

本文主要是介绍【自然语言处理 词库建设】怎样将搜狗的细胞词库scel格式转化成txt格式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

搜狗词库:https://pinyin.sogou.com/dict/

1、先下载搜狗词库到本地,文件格式为.scel后缀
2、利用python3 自动转换成txt

python3版本:

# -*- coding:utf-8 -*-import struct
import os# 由于原代码不适用python3且有大量bug
# 以及有函数没有必要使用且一些代码书写不太规范或冗余
#在原有的大框架基本不动的情况下作了大量的细节更改。
# 使得没有乱码出现,文件夹导入更方便等等。# 原作者:
# 搜狗的scel词库就是保存的文本的unicode编码,每两个字节一个字符(中文汉字或者英文字母)
# 找出其每部分的偏移位置即可
# 主要两部分
# 1.全局拼音表,貌似是所有的拼音组合,字典序
#       格式为(index,len,pinyin)的列表
#       index: 两个字节的整数 代表这个拼音的索引
#       len: 两个字节的整数 拼音的字节长度
#       pinyin: 当前的拼音,每个字符两个字节,总长len
#
# 2.汉语词组表
#       格式为(same,py_table_len,py_table,{word_len,word,ext_len,ext})的一个列表
#       same: 两个字节 整数 同音词数量
#       py_table_len:  两个字节 整数
#       py_table: 整数列表,每个整数两个字节,每个整数代表一个拼音的索引
#
#       word_len:两个字节 整数 代表中文词组字节数长度
#       word: 中文词组,每个中文汉字两个字节,总长度word_len
#       ext_len: 两个字节 整数 代表扩展信息的长度,好像都是10
#       ext: 扩展信息 前两个字节是一个整数(不知道是不是词频) 后八个字节全是0
#
#      {word_len,word,ext_len,ext} 一共重复same次 同音词 相同拼音表# 拼音表偏移,
startPy = 0x1540# 汉语词组表偏移
startChinese = 0x2628# 全局拼音表
GPy_Table = {}# 解析结果
# 元组(词频,拼音,中文词组)的列表
GTable = []# 原始字节码转为字符串
def byte2str(data):pos = 0str = ''while pos < len(data):c = chr(struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0])if c != chr(0):str += cpos += 2return str# 获取拼音表
def getPyTable(data):data = data[4:]pos = 0while pos < len(data):index = struct.unpack('H', bytes([data[pos],data[pos + 1]]))[0]pos += 2lenPy = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]pos += 2py = byte2str(data[pos:pos + lenPy])GPy_Table[index] = pypos += lenPy# 获取一个词组的拼音
def getWordPy(data):pos = 0ret = ''while pos < len(data):index = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]ret += GPy_Table[index]pos += 2return ret# 读取中文表
def getChinese(data):pos = 0while pos < len(data):# 同音词数量same = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]# 拼音索引表长度pos += 2py_table_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]# 拼音索引表pos += 2py = getWordPy(data[pos: pos + py_table_len])# 中文词组pos += py_table_lenfor i in range(same):# 中文词组长度c_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]# 中文词组pos += 2word = byte2str(data[pos: pos + c_len])# 扩展数据长度pos += c_lenext_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]# 词频pos += 2count = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]# 保存GTable.append((count, py, word))# 到下个词的偏移位置pos += ext_lendef scel2txt(in_path,file_name):print('-' * 60)with open(in_path+file_name, 'rb') as f:data = f.read()print("词库名:", byte2str(data[0x130:0x338])) # .encode('GB18030')print("词库类型:", byte2str(data[0x338:0x540]))print("描述信息:", byte2str(data[0x540:0xd40]))print("词库示例:", byte2str(data[0xd40:startPy]))getPyTable(data[startPy:startChinese])getChinese(data[startChinese:])if __name__ == '__main__':# scel所在文件夹路径in_path = u"C:/Users/xiaohu/Desktop/特征库/"# 输出词典所在文件夹路径out_path = u"C:\\Users\\xiaohu\\Desktop\\特征库\\coal_dict.txt"fin = [fname for fname in os.listdir(in_path) if fname[-5:] == ".scel"]# print(fin)for f in fin:scel2txt(in_path,f)# 保存结果with open(out_path, 'w', encoding='utf8') as f:f.writelines([word+'\n' for count, py, word in GTable])

这篇关于【自然语言处理 词库建设】怎样将搜狗的细胞词库scel格式转化成txt格式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144322

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

easyui同时验证账户格式和ajax是否存在

accountName: {validator: function (value, param) {if (!/^[a-zA-Z][a-zA-Z0-9_]{3,15}$/i.test(value)) {$.fn.validatebox.defaults.rules.accountName.message = '账户名称不合法(字母开头,允许4-16字节,允许字母数字下划线)';return fal

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

明明的随机数处理问题分析与解决方案

明明的随机数处理问题分析与解决方案 引言问题描述解决方案数据结构设计具体步骤伪代码C语言实现详细解释读取输入去重操作排序操作输出结果复杂度分析 引言 明明生成了N个1到500之间的随机整数,我们需要对这些整数进行处理,删去重复的数字,然后进行排序并输出结果。本文将详细讲解如何通过算法、数据结构以及C语言来解决这个问题。我们将会使用数组和哈希表来实现去重操作,再利用排序算法对结果

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)

使用协程实现高并发的I/O处理

文章目录 1. 协程简介1.1 什么是协程?1.2 协程的特点1.3 Python 中的协程 2. 协程的基本概念2.1 事件循环2.2 协程函数2.3 Future 对象 3. 使用协程实现高并发的 I/O 处理3.1 网络请求3.2 文件读写 4. 实际应用场景4.1 网络爬虫4.2 文件处理 5. 性能分析5.1 上下文切换开销5.2 I/O 等待时间 6. 最佳实践6.1 使用 as

Python脚本:TXT文档行数统计

count = 0 #计数变量file_dirs = input('请输入您要统计的文件根路径:')filename = open(file_dirs,'r') #以只读方式打开文件file_contents = filename.read() #读取文档内容到file_contentsfor file_content in file_contents: