本文主要是介绍【自然语言处理 词库建设】怎样将搜狗的细胞词库scel格式转化成txt格式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
搜狗词库:https://pinyin.sogou.com/dict/
1、先下载搜狗词库到本地,文件格式为.scel后缀
2、利用python3 自动转换成txt
python3版本:
# -*- coding:utf-8 -*-import struct
import os# 由于原代码不适用python3且有大量bug
# 以及有函数没有必要使用且一些代码书写不太规范或冗余
#在原有的大框架基本不动的情况下作了大量的细节更改。
# 使得没有乱码出现,文件夹导入更方便等等。# 原作者:
# 搜狗的scel词库就是保存的文本的unicode编码,每两个字节一个字符(中文汉字或者英文字母)
# 找出其每部分的偏移位置即可
# 主要两部分
# 1.全局拼音表,貌似是所有的拼音组合,字典序
# 格式为(index,len,pinyin)的列表
# index: 两个字节的整数 代表这个拼音的索引
# len: 两个字节的整数 拼音的字节长度
# pinyin: 当前的拼音,每个字符两个字节,总长len
#
# 2.汉语词组表
# 格式为(same,py_table_len,py_table,{word_len,word,ext_len,ext})的一个列表
# same: 两个字节 整数 同音词数量
# py_table_len: 两个字节 整数
# py_table: 整数列表,每个整数两个字节,每个整数代表一个拼音的索引
#
# word_len:两个字节 整数 代表中文词组字节数长度
# word: 中文词组,每个中文汉字两个字节,总长度word_len
# ext_len: 两个字节 整数 代表扩展信息的长度,好像都是10
# ext: 扩展信息 前两个字节是一个整数(不知道是不是词频) 后八个字节全是0
#
# {word_len,word,ext_len,ext} 一共重复same次 同音词 相同拼音表# 拼音表偏移,
startPy = 0x1540# 汉语词组表偏移
startChinese = 0x2628# 全局拼音表
GPy_Table = {}# 解析结果
# 元组(词频,拼音,中文词组)的列表
GTable = []# 原始字节码转为字符串
def byte2str(data):pos = 0str = ''while pos < len(data):c = chr(struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0])if c != chr(0):str += cpos += 2return str# 获取拼音表
def getPyTable(data):data = data[4:]pos = 0while pos < len(data):index = struct.unpack('H', bytes([data[pos],data[pos + 1]]))[0]pos += 2lenPy = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]pos += 2py = byte2str(data[pos:pos + lenPy])GPy_Table[index] = pypos += lenPy# 获取一个词组的拼音
def getWordPy(data):pos = 0ret = ''while pos < len(data):index = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]ret += GPy_Table[index]pos += 2return ret# 读取中文表
def getChinese(data):pos = 0while pos < len(data):# 同音词数量same = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]# 拼音索引表长度pos += 2py_table_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]# 拼音索引表pos += 2py = getWordPy(data[pos: pos + py_table_len])# 中文词组pos += py_table_lenfor i in range(same):# 中文词组长度c_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]# 中文词组pos += 2word = byte2str(data[pos: pos + c_len])# 扩展数据长度pos += c_lenext_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]# 词频pos += 2count = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]# 保存GTable.append((count, py, word))# 到下个词的偏移位置pos += ext_lendef scel2txt(in_path,file_name):print('-' * 60)with open(in_path+file_name, 'rb') as f:data = f.read()print("词库名:", byte2str(data[0x130:0x338])) # .encode('GB18030')print("词库类型:", byte2str(data[0x338:0x540]))print("描述信息:", byte2str(data[0x540:0xd40]))print("词库示例:", byte2str(data[0xd40:startPy]))getPyTable(data[startPy:startChinese])getChinese(data[startChinese:])if __name__ == '__main__':# scel所在文件夹路径in_path = u"C:/Users/xiaohu/Desktop/特征库/"# 输出词典所在文件夹路径out_path = u"C:\\Users\\xiaohu\\Desktop\\特征库\\coal_dict.txt"fin = [fname for fname in os.listdir(in_path) if fname[-5:] == ".scel"]# print(fin)for f in fin:scel2txt(in_path,f)# 保存结果with open(out_path, 'w', encoding='utf8') as f:f.writelines([word+'\n' for count, py, word in GTable])
这篇关于【自然语言处理 词库建设】怎样将搜狗的细胞词库scel格式转化成txt格式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!