TensorFlow seq2seq解读

2024-05-07 14:48
文章标签 解读 tensorflow seq2seq

本文主要是介绍TensorFlow seq2seq解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

github链接

注:1.2最新版本不兼容,用命令pip3 install tensorflow==1.0.0

在translate.py文件里,是调用各种函数;在seq2seq_model.py文件里,是定义了这个model的具体输入、输出、中间参数是怎样的init,以及获取每个epoch训练数据get_batch和训练方法step
确定这些之后再考虑各种变量的shape等问题。

代码结构
seq2seq_model.py中定义了seq2seqModelclass结构
__init__函数里:

主要定义了self的各种参数的取值。

  • (如果需要sampled softmax: 定义sampled_softmax_loss函数)
  • 定义RNN结构
  • 准备encoder_inputs等的placeholder
  • 调用seq2seq.model_with_buckets得到self.outputsself.losses
  • tf.clip_by_global_norm的方法来得到self.gradient_normsupdates
step函数(进行一次训练)里:

feed:把输入参数的encoder_inputsdecoder_inputs放入input_feed,最后session.run计算output的值。

get_batch函数里:

字面义,从输入参数data中随机选取符合要求bucket_id的数据PAD后返回。
返回结果——以self_test时的encoder_inputs为例,其格式为encoder_size*batch_size(6*32),decoder_inputs同理

translate.py是直接运行的文件
函数read_data

读取source language和target language文件,返回n个data_set,每个里面是(source,target)的句子pair,长度符合bucket[n]的要求

函数create_model

利用seq2seq_model.py生成model结构,如果已经存在ckpt文件,则读取参数,否则session.run(initializer)

函数train

with tf.session() as sess:

  • 调用create_model函数生成model
  • 调用read_data生成dev_set和train_set
  • training loop: 随机选一个bucket_id->model.get_batch->model.step
函数decode

with tf.session() as sess:

  • create_model并load参数
  • 读取待翻译的句子,决定对应的bucket_id
  • model.get_batch->model.step
  • 取可能性最大的output,截断
data_utils.py

生成了以上文件
ids代表把单词转化为了id,giga开头的是训练文件,newstest是测试文件,vocab里是一行一个单词的单词汇总。

具体分析:
1. model里调用的几个自带函数tf.nn.sampled_softmax_losstf.contrib.legacy_seq2seq.embedding_attention_seq2seqtf.contrib.legacy_seq2seq.model_with_buckets的关系。

tf.nn.sampled_softmax_loss,网络本身通过sampled_softmax(W*x+b)把输入的向量的维度扩展到target_vocab_size,这个函数是用来这一步的loss,会在后来被用于计算整体的loss。
tf.contrib.legacy_seq2seq.embedding_attention_seq2seq是不能计算的loss的,它只是负责返回这个网络的最终输出outputs [batch_size x decoder_size] 和状态states[batch_size x cell.state_size]。主要参数有

encoder_inputs,
decoder_inputs,
cell

tf.contrib.legacy_seq2seq.model_with_buckets是用来和target作比较,能计算出整体的loss(sampled_softmax的loss是一部分)。返回outputs [batch_size x output_size]和losses for each bucket。主要参数有

self.encoder_inputs, self.decoder_inputs, targets,
self.target_weights, buckets,
lambda x, y: seq2seq_f(x, y, False),
softmax_loss_function=softmax_loss_function
2. train和decode时的RNN输入和输出是怎样的?


train的时候,decoder_input是完整的

3. sess.run部分的训练方法是怎样的?

在model的初始化部分,定义了self.losses[len(bucket)]self.gradient_norms[len(bucket)]self.updates[len(bucket)]
在model.step部分,定义output_feed即为上述三个合并在一起。当然,要feed的只是某一个bucket,所以要指定[bucket_id]。

代码运行说明:
  1. 首先用迅雷下载WMT语料库(压缩包),未避免每次运行都要重新解压,在translate.py文件中的train函数中,把else条件改为

        from_train="../newstest2013.en.ids40000"to_train="../newstest2013.fr.ids40000"from_dev="../newstest2013.en.ids40000"to_dev="../newstest2013.fr.ids40000"
    具体位置根据实际情况判断,其作用是直接读取train和dev的source和target的word_ids文件,而不用每次都重新生成。上图中的.en.fr结尾的文件都可以删除,因为它们是原始word组成的文件,不再需要。
  2. 此命令需要运行很长时间,因为放到了服务器上。且如果不用tutorial中的小参数内存会不够。
    python translate.py --data_dir ~/omg --train_dir ~/omg/train --size=256 --num_layers=2 --steps_per_checkpoint=50
    运行后会依次显示:

    Creating 2 layers of 256 units.
    Created model with fresh parameters.
    reading data lines XXX#作用是读取train文件中的句子,根据长度分配到不同的bucket中
    之后进行到translate.py中的while true循环中,不断读取数据再model.step进行训练。同时会显示不同bucket中的perplexity。
  3. 经过~30K步(tutorial中的数据)0号1号bucket中的perplexity会下降到个位数,此时即可test。注意命令中的参数务必和train时的一样,否则读取checkpoint会报错。
    python translate.py --decode --data_dir ~/omg --train_dir ~/omg/train --size=256 --num_layers=2 --steps_per_checkpoint=50
    成功进入读取输入的翻译阶段~由于训练参数太小效果不理想,如下图:
    将United States翻译成加拿大,不过China翻译正确。

链接:https://github.com/yingtaomj/GNMT_test

这篇关于TensorFlow seq2seq解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967657

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio

引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互