布伦特方法(Brent‘s method)---结合二分法、割线法和逆二次插值法的求根方法

本文主要是介绍布伦特方法(Brent‘s method)---结合二分法、割线法和逆二次插值法的求根方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基础介绍:

给定给定区间\left [ a,b \right ],函数连续且f(a)\cdot f(b)<0,那么根据介值定理,函数必然在区间内有根。

  1. 二分法:将区间不断二分,使端点不断逼近零点。下一次迭代的区间为\left [ a,c \right ]\left [ c,b \right ],其中c=\frac{a+b}{2}
  2. 割线法(线性插值):基本思想是用弦的斜率近似代替目标函数的切线斜率,并用割线与横轴交点的横坐标作为方程式的根的近似。即给定两个点\left ( a,f(a) \right ),\left ( b,f(b) \right )。其割线方程为y=\frac{f(b)-f(a)}{b-a}\cdot (x-b)+f(b),那么令y=0,x的值即为下一次迭代的结果c=b-\frac{f(b)\cdot (b-a)}{f(b)-f(a)}
  3. 逆二次插值法:为割线法的进化版本。使用三个点确定一个二次函数,二次函数与横轴交错的点即为下次迭代的值。但是,其二次函数可能不会和横轴相交,因此做出一点改变,以y值作为自变量。给定三个点\left ( x_{i-2},f(x_{i-2}) \right ),(x_{i-1},f(x_{i-1})),(x_{i},f(x_{i})),则通过这三个点确定的二次函数为x=\frac{(y-f(x_{i-1}))(y-f(x_{i}))}{(f(x_{i-2})-f(x_{i-1}))(f(x_{i-2})-f(x_{i}))}\cdot x_{i-2}+\frac{(y-f(x_{i-2}))(y-f(x_{i-1}))}{(f({x_{i}})-f(x_{i-2}))(f(x_{i})-f(x_{i-1}))}\cdot x_{i}+\frac{(y-f(x_{i-2}))(y-f(x_{i}))}{(f(x_{i-1})-f(x_{i-2}))(f(x_{i-1})-f(x_{i}))}\cdot x_{i-1},令y=0,求得x_{i+1}=\frac{f(x_{i-1})f(x_{i})}{(f(x_{i-2})-f(x_{i-1}))(f(x_{i-2})-f(x_{i}))}\cdot x_{i-2}+\frac{f(x_{i-2})f(x_{i-1})}{(f({x_{i}})-f(x_{i-2}))(f(x_{i})-f(x_{i-1}))}\cdot x_{i}+\frac{f(x_{i-2})f(x_{i})}{(f(x_{i-1})-f(x_{i-2}))(f(x_{i-1})-f(x_{i}))}\cdot x_{i-1}

布伦特方法:

初始化区间(a_{0},b_{0})使得f(a_{0})\cdot f(b_{0})<0。其中b_{k}是上次迭代中的根估计值。如果\left | f(a_{0}) \right |<\left | f(b_{0}) \right |,那么赋值互换(我们认为对应函数值的绝对值较小的点更接近真正的根值)。

每次迭代包含四个点:

  1. b_{k}:为当前迭代的根估算值;
  2. a_{k}:对位点,即满足\left | f(a_{k}) \right |<\left | f(b_{k}) \right |f(a_{k})\cdot f(b_{k})<0的值。
  3. b_{k-1}:上一次迭代的根估算值,第一次迭代设置为b_{k-1}=a_{0}
  4. b_{k-2}:上上此迭代的根估算值(不用初始化,在首次迭代过程中,不会用到他来进行判断,结尾进行赋值)。

有以下四个不等式:

\left | \delta \right |<\left | b_{k}-b_{k-1} \right |  ①

\left | \delta \right |<\left | b_{k-1}-b_{k-2} \right |  ②

\left | s-b_{k} \right |<\frac{1}{2}\left | b_{k}-b_{k-1} \right |  ③

\left | s-b_{k} \right |<\frac{1}{2}\left | b_{k-1}-b_{k-2} \right | ④

上次迭代为二分法且①为假;上次迭代为二分法且③为假;上次迭代为插值法且②为假;上次迭代为插值法且④为假;以插值法计算的临时值不在\frac{3a_{k}+b{k}}{4}b_{k} 中间,以上五个条件满足一个,那么本次迭代的值采用二分法,否则采用插值法。

而插值法的选择如下:如果三点各不同,则用二次插值;否则用线性插值。

本次迭代的临时值s作为区间的一个端点,另一个端点在a_{k}b_{k}中选择,二者作为a_{k+1},b_{k+1},且满足f(a_{k+1})\cdot f(b_{k+1})<0,|f(a_{k+1})|>|f(b_{k+1})|

 

 

 

 

 

 

 

 

 

这篇关于布伦特方法(Brent‘s method)---结合二分法、割线法和逆二次插值法的求根方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/620269

相关文章

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

mss32.dll文件丢失怎么办? 电脑提示mss32.dll丢失的多种修复方法

《mss32.dll文件丢失怎么办?电脑提示mss32.dll丢失的多种修复方法》最近,很多电脑用户可能遇到了mss32.dll文件丢失的问题,导致一些应用程序无法正常启动,那么,如何修复这个问题呢... 在电脑常年累月的使用过程中,偶尔会遇到一些问题令人头疼。像是某个程序尝试运行时,系统突然弹出一个错误提