【Python 数据分析】描述性统计:平均数(均值)、方差、标准差、极大值、极小值、中位数、百分位数、用箱型图表示分位数

本文主要是介绍【Python 数据分析】描述性统计:平均数(均值)、方差、标准差、极大值、极小值、中位数、百分位数、用箱型图表示分位数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 简述 / 前言
  • 1. 平均数(均值)、方差、标准差、极大值、极小值
  • 2. 中位数
  • 3. 百分位数
  • 4. 用箱型图表示分位数

简述 / 前言

前面讲了数据分析中的第一步:数据预处理,下面就是数据分析的其中一个重头戏:描述性统计,具体内容为:平均数(均值)、方差、标准差、极大值、极小值、中位数、百分位数、用箱型图表示分位数

1. 平均数(均值)、方差、标准差、极大值、极小值

关键方法含义
.mean()求均值
.var()求方差
.std()求标准差
.max()求极大值
.min()求极小值

示例:

import pandas as pd
import numpy as np
import mathnp.random.seed(2024)df = pd.DataFrame(columns=['num'])  # 构造原始数据文件
df['num'] = [np.random.ranf() * 10 for i in range(10)]
print(df, '\n')# num列的平均值
print(f"列num的平均值(均值)为:{df['num'].mean()}")
# num列的方差
print(f"列num的方差为:{df['num'].var()}")
# num列的标准差(方法一)
print(f"列num的标准差(方法一)为:{df['num'].std()}")
# num列的标准差(方法二)
print(f"列num的标准差(方法二)为:{math.sqrt(df['num'].var())}")
# num列的极大值
print(f"列num的极大值为:{df['num'].max()}")
# num列的极小值
print(f"列num的极小值为:{df['num'].min()}")

输出:

        num
0  5.880145
1  6.991087
2  1.881520
3  0.438086
4  2.050190
5  1.060629
6  7.272401
7  6.794005
8  4.738457
9  4.482958 列num的平均值为:4.158947812331025
列num的方差为:6.793267492129306
列num的标准差(方法一)为:2.6063897429450775
列num的标准差(方法二)为:2.6063897429450775
列num的极大值为:7.2724014368445475
列num的极小值为:0.43808563746864815

2. 中位数

关键方法:.median()

示例:

import pandas as pd
import numpy as npnp.random.seed(2024)df = pd.DataFrame(columns=['num'])  # 构造原始数据文件
df['num'] = [np.random.ranf() * 10 for i in range(10)]
print(df, '\n')# num列的中位数
print(f"列num的中位数为:{df['num'].median()}")

输出:

        num
0  5.880145
1  6.991087
2  1.881520
3  0.438086
4  2.050190
5  1.060629
6  7.272401
7  6.794005
8  4.738457
9  4.482958 列num的中位数为:4.610707639442616

3. 百分位数

关键方法:.quantile(q=0.5, interpolation="linear"),各参数含义如下:

参数含义
q要计算的分位数,取值范围为:[0, 1],常取:0.25, 0.5(默认值), 0.75
interpolation插值类型,可以选:linear(默认值), lower, higher, midpoint, nearest

示例:

import pandas as pd
import numpy as npnp.random.seed(2024)df = pd.DataFrame(columns=['num'])  # 构造原始数据文件
df['num'] = [np.random.ranf() * 10 for i in range(10)]
print(df, '\n')# num列的下分位数(25%)
print(f"列num的下分位数(25%)为:{df['num'].quantile(0.25)}")
# num列的中位数(50%)
print(f"列num的中位数(50%)为:{df['num'].quantile(0.50)}")
# num列的上分位数(75%)
print(f"列num的上分位数(75%)为:{df['num'].quantile(0.75)}")# 或者
print(f"\n列num的分位数(25%、50%、75%)为:\n{df['num'].quantile([.25, .5, .75])}")

输出:

        num
0  5.880145
1  6.991087
2  1.881520
3  0.438086
4  2.050190
5  1.060629
6  7.272401
7  6.794005
8  4.738457
9  4.482958 列num的下分位数(25%)为:1.9236870812745168
列num的中位数(50%)为:4.610707639442616
列num的上分位数(75%)为:6.565540223677057列num的分位数(25%50%75%)为:
0.25    1.923687
0.50    4.610708
0.75    6.565540
Name: num, dtype: float64

4. 用箱型图表示分位数

关键方法:df['column']..plot.box()

一般写法:df['column'].plot.box(patch_artist=True, notch=True, color=color, figsize=(8, 6)),各参数含义如下:

参数含义
patch_artist箱型图是否需要填充颜色(True:填充颜色;False:不填充颜色,只保留边缘颜色)
notch是否用凹进的方式显示中位数(50%)(True:中位数用凹进的方式表示;False:中位数用一条线段表示)
color箱型图的颜色
figsize图片大小

示例【patch_artist 和 notch 都为 True】:

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltnp.random.seed(2024)df = pd.DataFrame(columns=['num'])  # 构造原始数据文件
df['num'] = [np.random.ranf() * 10 for i in range(10)]df['num'].plot.box(patch_artist=True, notch=True, color='green', figsize=(8, 6))  # 绘制箱状图
plt.show()

输出:
请添加图片描述

示例【patch_artist 和 notch 都为 False】:

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltnp.random.seed(2024)df = pd.DataFrame(columns=['num'])  # 构造原始数据文件
df['num'] = [np.random.ranf() * 10 for i in range(10)]df['num'].plot.box(patch_artist=False, notch=False, color='green', figsize=(8, 6))  # 绘制箱状图
plt.show()

输出:
请添加图片描述

从这个箱型图可以很清晰的看出样本数据的极小值和极大值,以及上分位数(75%),中位数(50%)和下分位数(25%)。

除了上面那种写法,还有下面这种写法:df.plot.box(column=column, patch_artist=True, notch=True, color=color, figsize=(8, 6)),就是把 column 放到 box 方法里面。

那么上述代码可以改为:

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltnp.random.seed(2024)df = pd.DataFrame(columns=['num'])  # 构造原始数据文件
df['num'] = [np.random.ranf() * 10 for i in range(10)]# df['num'].plot.box(patch_artist=False, notch=False, color='green', figsize=(8, 6))  # 绘制箱状图
# 或者
df.plot.box(column='num', patch_artist=False, notch=False, color='green', figsize=(8, 6))  # 绘制箱状图
plt.show()

输出的结果是一样的~

这篇关于【Python 数据分析】描述性统计:平均数(均值)、方差、标准差、极大值、极小值、中位数、百分位数、用箱型图表示分位数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/619694

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(