【Python 数据分析】描述性统计:平均数(均值)、方差、标准差、极大值、极小值、中位数、百分位数、用箱型图表示分位数

本文主要是介绍【Python 数据分析】描述性统计:平均数(均值)、方差、标准差、极大值、极小值、中位数、百分位数、用箱型图表示分位数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 简述 / 前言
  • 1. 平均数(均值)、方差、标准差、极大值、极小值
  • 2. 中位数
  • 3. 百分位数
  • 4. 用箱型图表示分位数

简述 / 前言

前面讲了数据分析中的第一步:数据预处理,下面就是数据分析的其中一个重头戏:描述性统计,具体内容为:平均数(均值)、方差、标准差、极大值、极小值、中位数、百分位数、用箱型图表示分位数

1. 平均数(均值)、方差、标准差、极大值、极小值

关键方法含义
.mean()求均值
.var()求方差
.std()求标准差
.max()求极大值
.min()求极小值

示例:

import pandas as pd
import numpy as np
import mathnp.random.seed(2024)df = pd.DataFrame(columns=['num'])  # 构造原始数据文件
df['num'] = [np.random.ranf() * 10 for i in range(10)]
print(df, '\n')# num列的平均值
print(f"列num的平均值(均值)为:{df['num'].mean()}")
# num列的方差
print(f"列num的方差为:{df['num'].var()}")
# num列的标准差(方法一)
print(f"列num的标准差(方法一)为:{df['num'].std()}")
# num列的标准差(方法二)
print(f"列num的标准差(方法二)为:{math.sqrt(df['num'].var())}")
# num列的极大值
print(f"列num的极大值为:{df['num'].max()}")
# num列的极小值
print(f"列num的极小值为:{df['num'].min()}")

输出:

        num
0  5.880145
1  6.991087
2  1.881520
3  0.438086
4  2.050190
5  1.060629
6  7.272401
7  6.794005
8  4.738457
9  4.482958 列num的平均值为:4.158947812331025
列num的方差为:6.793267492129306
列num的标准差(方法一)为:2.6063897429450775
列num的标准差(方法二)为:2.6063897429450775
列num的极大值为:7.2724014368445475
列num的极小值为:0.43808563746864815

2. 中位数

关键方法:.median()

示例:

import pandas as pd
import numpy as npnp.random.seed(2024)df = pd.DataFrame(columns=['num'])  # 构造原始数据文件
df['num'] = [np.random.ranf() * 10 for i in range(10)]
print(df, '\n')# num列的中位数
print(f"列num的中位数为:{df['num'].median()}")

输出:

        num
0  5.880145
1  6.991087
2  1.881520
3  0.438086
4  2.050190
5  1.060629
6  7.272401
7  6.794005
8  4.738457
9  4.482958 列num的中位数为:4.610707639442616

3. 百分位数

关键方法:.quantile(q=0.5, interpolation="linear"),各参数含义如下:

参数含义
q要计算的分位数,取值范围为:[0, 1],常取:0.25, 0.5(默认值), 0.75
interpolation插值类型,可以选:linear(默认值), lower, higher, midpoint, nearest

示例:

import pandas as pd
import numpy as npnp.random.seed(2024)df = pd.DataFrame(columns=['num'])  # 构造原始数据文件
df['num'] = [np.random.ranf() * 10 for i in range(10)]
print(df, '\n')# num列的下分位数(25%)
print(f"列num的下分位数(25%)为:{df['num'].quantile(0.25)}")
# num列的中位数(50%)
print(f"列num的中位数(50%)为:{df['num'].quantile(0.50)}")
# num列的上分位数(75%)
print(f"列num的上分位数(75%)为:{df['num'].quantile(0.75)}")# 或者
print(f"\n列num的分位数(25%、50%、75%)为:\n{df['num'].quantile([.25, .5, .75])}")

输出:

        num
0  5.880145
1  6.991087
2  1.881520
3  0.438086
4  2.050190
5  1.060629
6  7.272401
7  6.794005
8  4.738457
9  4.482958 列num的下分位数(25%)为:1.9236870812745168
列num的中位数(50%)为:4.610707639442616
列num的上分位数(75%)为:6.565540223677057列num的分位数(25%50%75%)为:
0.25    1.923687
0.50    4.610708
0.75    6.565540
Name: num, dtype: float64

4. 用箱型图表示分位数

关键方法:df['column']..plot.box()

一般写法:df['column'].plot.box(patch_artist=True, notch=True, color=color, figsize=(8, 6)),各参数含义如下:

参数含义
patch_artist箱型图是否需要填充颜色(True:填充颜色;False:不填充颜色,只保留边缘颜色)
notch是否用凹进的方式显示中位数(50%)(True:中位数用凹进的方式表示;False:中位数用一条线段表示)
color箱型图的颜色
figsize图片大小

示例【patch_artist 和 notch 都为 True】:

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltnp.random.seed(2024)df = pd.DataFrame(columns=['num'])  # 构造原始数据文件
df['num'] = [np.random.ranf() * 10 for i in range(10)]df['num'].plot.box(patch_artist=True, notch=True, color='green', figsize=(8, 6))  # 绘制箱状图
plt.show()

输出:
请添加图片描述

示例【patch_artist 和 notch 都为 False】:

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltnp.random.seed(2024)df = pd.DataFrame(columns=['num'])  # 构造原始数据文件
df['num'] = [np.random.ranf() * 10 for i in range(10)]df['num'].plot.box(patch_artist=False, notch=False, color='green', figsize=(8, 6))  # 绘制箱状图
plt.show()

输出:
请添加图片描述

从这个箱型图可以很清晰的看出样本数据的极小值和极大值,以及上分位数(75%),中位数(50%)和下分位数(25%)。

除了上面那种写法,还有下面这种写法:df.plot.box(column=column, patch_artist=True, notch=True, color=color, figsize=(8, 6)),就是把 column 放到 box 方法里面。

那么上述代码可以改为:

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltnp.random.seed(2024)df = pd.DataFrame(columns=['num'])  # 构造原始数据文件
df['num'] = [np.random.ranf() * 10 for i in range(10)]# df['num'].plot.box(patch_artist=False, notch=False, color='green', figsize=(8, 6))  # 绘制箱状图
# 或者
df.plot.box(column='num', patch_artist=False, notch=False, color='green', figsize=(8, 6))  # 绘制箱状图
plt.show()

输出的结果是一样的~

这篇关于【Python 数据分析】描述性统计:平均数(均值)、方差、标准差、极大值、极小值、中位数、百分位数、用箱型图表示分位数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/619694

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http