Word2vec,是一群用来产生词向量的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。关于word2vec模型,下面说法不正确的是: A. 得到的词向量维度小,可以节省存储和计算资源 B. 考虑了全局语料库的信息 C. 无法解决多义词的问题 D. 可以表示词和词之间的关系 数据分析认证考试介绍:点击进入 数据分析考试大纲下载 题目来源于CDA模拟题库 点
使用MicrobiomeAnalyst进行微生物组数据的全面统计、功能和元分析 Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data Nature Protocols Impact Factor 11.334 https://do
Word2vec,是一群用来产生词向量的相关模型,用来训练以重新建构语言学之词文本。Word2Vec包含哪两种模型? A. CBOW模型和Skip-Gram模型 B. Bag-of-Words和GloVe模型 C. LSA模型和CBOW模型 D. GloVe模型和CBOW模型 数据分析认证考试介绍:点击进入 数据分析考试大纲下载 题目来源于CDA模拟题库 点击此处获取答案