Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

本文主要是介绍Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

 

**爬取豆瓣电影信息,分析近年电影行业的发展情况**

本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

 

最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。

目录

 

**爬取豆瓣电影信息,分析近年电影行业的发展情况**

一、爬取豆瓣电影

1.1认识XPath

1.2豆瓣电影信息

(1)主页数据探索

(2)详细页探索

1.3代码区

1.4 完整代码

1.5遇到的问题

1.使用User_Agent,仿造浏览器访问 headers

2.伪造Cookie,解封豆瓣IP

3.使用代理IP proxies

二、数据分析和可视化

2.1数据清洗

2.2数据分析,终于到了

2.3  建立回归模型

2.4 完整代码


一、爬取豆瓣电影

1.1认识XPath

先简单介绍下XPath,爬虫的时候会用到,尤其是爬取页面的内容不同时,需要对此进行修改。

lxml是一款高性能的 Python HTML/XML 解析器,我们可以利用XPath,来快速的定位特定元素以及获取节点信息。

xpath的节点关系

每个XML的标签我们都称之为节点,其中最顶层的节点称为根节点。

 

xpath中节点的关系

选取节点
XPath 使用路径表达式来选取 XML 文档中的节点或者节点集。这些路径表达式和我们在常规的电脑文件系统中看到的表达式非常相似。

使用chrome插件选择标签时候,选中时,选中的标签会添加属性class=”xh-highlight”

下面列出了最有用的表达式:

实例
在下面的表格中,已列出了一些路径表达式以及表达式的结果:

xpath基础语法练习:
选择所有的h1下的文本

//h1/text()

获取所有的a标签的href

//a/@href

获取html下的head下的title的文本

/html/head/title/text()

获取html下的head下的link标签的href

/html/head/link/@href

 

查找特定的节点

1.2豆瓣电影信息

(1)主页数据探索

接下来开始正式爬取豆瓣电影的数据

https://movie.douban.com/tag/#/?sort=U&range=8,10&tags=%E7%94%B5%E5%BD%B1,%E4%B8%AD%E5%9B%BD%E5%A4%A7%E9%99%86&page_limit=20&page_start=0

对应关系如下:

1. sort

排序方式,有三种: U:近期热门排序,T:标记最多排序, R:最新上映排序, S:评价最高排序:

2.range=0,10  评分范围

3.tags    影视形式,类型,地区,特色

4.其它,可以不管

playbale=1:表示可播放
unwatched=1:表示还没看过的

 

通过对网址分析https://movie.douban.com/tag/#/?sort=U&range=8,10&tags=%E7%94%B5%E5%BD%B1,%E4%B8%AD%E5%9B%BD%E5%A4%A7%E9%99%86&page_limit=20&page_start=0

“加载更多”分析

1) 首先要能看网页发回来的JSON数据,步骤如下:

  • 打开chrome的“检查”工具
  • 切换到network界面
  • 选择XHR
  • 在页面上点击“加载更多”后会看到浏览器发出去的请求
  • Preview界面可以看到接受到的JSON数据

 

这里可以发现,每次点击“加载更多”,每次会增加显示20个电影,真实URL中的start这个参数从0-20-40…变化,发送回来最新加载出来的20个电影的JSON数据,了解了这些以后,下面就可以用代码实现抓取了。

  • page_limit=20 决定请求信息的数量
  • page_start=0 决定请求的位置

(2)详细页探索

可以看到,其实主页上已经包含了影片的名称和评分数据,详细的内容还要点击具体的影片,打开如下:

这些都是我们要获取的信息。

通过以上就可以确定超链接位置所在,具体的方法是点击上图红色方框内的“箭头”,之后选择你想获取的信息即可,然后下面就会显示出来。

具体的内容如下,语法见前面内容:

name=html.xpath('//span[@property="v:itemreviewed"]/text()')               #电影名director=html.xpath('//a[@rel="v:directedBy"]//text()')                              #导演actor1=html.xpath('//span[@class="attrs"]/a[@rel="v:starring"]//text()')   #演员
actor = ["/".join(actor1)]                                                                            #有多个内容,合并在一起award1=html.xpath('//*[@id="content"]/div[3]/div[1]/div[8]//li[1]/a//text()') #获奖情况
award = ["/".join(award1)]                                                                         #有多个内容,合并在一起

 

其他数据参考下面的代码:

name=html.xpath('//span[@property="v:itemreviewed"]/text()')#电影名director=html.xpath('//a[@rel="v:directedBy"]//text()')#导演#playwright=html.xpath('//span[@class="pl",contains(text(),"编剧")]//text()')actor1=html.xpath('//span[@class="attrs"]/a[@rel="v:starring"]//text()')#演员actor = ["/".join(actor1)]movie_class1=html.xpath('//span[@property="v:genre"]//text()')#电影分类movie_class = ["/".join(movie_class1)]contry=re.compile('<span class="pl">制片国家/地区:</span>(.*?)<br/>').findall(response.text)#制片国家\地区releasedate=html.xpath('//span[@property="v:initialReleaseDate"]/@content')#上映日期runtime=html.xpath('//span[@property="v:runtime"]/@content')#片长grade=html.xpath('//strong[@class="ll rating_num"]/text()')#电影评分award1=html.xpath('//*[@id="content"]/div[3]/div[1]/div[8]//li[1]/a//text()')#获奖情况award = ["/".join(award1)]comments_user=html.xpath('//span[@property="v:votes"]/text()')#评论人数            duanpingshu1=html.xpath('//*[@id="comments-section"]/div[1]/h2/span/a/text()')#短评数duanpingshu = re.findall("\d+\.?\d*", str(duanpingshu1))    #转化为数字yinhpingshu1=html.xpath('//*[@id="reviews-wrapper"]/header/h2/span/a/text()')#影评数yinhpingshu = re.findall("\d+\.?\d*", str(yinhpingshu1))    #转化为数字

好,那理一下我们的思路

  • 首先,进入豆瓣电影,一共获取n页,每页20个影片。(n取决于你,想获取多少电影)
  • 然后,针对每一页的20个影片,进入其详细内容页面
  • 最后,解析每个影片的详细内容,保存内容到数据库中

代码思路如下:

# 遍历10页
# 保存所有影片数据集
    # 爬取n页的每一页数据 
    # 遍历每一页的20个影片
        # 爬取每个影片的详细内容
        # 保存每个影片信息到数据集中
# 保存结果到数据库中

稍微解释一下:两层循环,第一层是遍历n页网页,因为其中每个网页分别有20个影片,所以,第二层循环又依次遍历20个影片获取详细信息,最后保存结果到数据库中!
 

1.3代码区

由于豆瓣的电影区采用了Ajax技术来渲染页面信息,为方便爬取页面的电影信息,采用了selenium方法来模拟浏览器访问页面并对Ajax渲染操作,不断获取更新的电影信息。把要用的服务准备好。

import requests
from lxml import etree
import pandas as pd
import numpy as np
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
import time
import random
import re

user_agent.txt收集了大量不同的user-agent数据,用来编辑访问请求的请求头信息,模仿后期的浏览器浏览。user_agents1.txt在附件中

with open('user_agents1.txt', 'r') as f:U=[]for line in f:U.append(f.readline())

通过selenium作n次Ajax渲染后,爬取页面源代码中电影的图片、url,并关闭浏览器。先爬取高分电影(8分-10分)。

url='https://movie.douban.com/tag/#/?sort=U&range=8,10&tags=%E7%94%B5%E5%BD%B1,%E4%B8%AD%E5%9B%BD%E5%A4%A7%E9%99%86&page_limit=20&page_start=0'
#豆瓣华语电影区,根据热门标签选电影的url
broser=webdriver.C

这篇关于Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1150133

相关文章

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函