【Python】Pandas:数据分析

2024-09-05 02:44
文章标签 python pandas 数据分析

本文主要是介绍【Python】Pandas:数据分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pandas 是 Python 中功能强大的数据分析工具,用于处理和分析结构化数据。本文将通过分步骤的方式,详细介绍如何使用 Pandas 进行数据分组、重塑、透视表、时间序列处理、类别型数据管理以及数据可视化。这些知识点将帮助初学者快速上手并掌握 Pandas 的核心功能。

数据分组(Grouping)

数据分组是数据分析中的常见操作,Pandas 的 groupby() 方法允许我们按列对数据进行分组,然后对每个组执行聚合运算,如计算平均值、总和等。

按列分组并计算平均值

在数据分析中,经常需要根据某一列对数据进行分组,并计算每个组的统计指标。以下是按 Name 列分组并计算每组 Age 列平均值的示例:

import pandas as pd# 示例数据
data = {'Name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35, 24, 29, 37],'Score': [85, 90, 88, 75, 95, 85]
}df = pd.DataFrame(data)# 按 Name 列分组,并计算每组的平均值
grouped = df.groupby('Name').mean()
print(grouped)

输出结果如下:

          Age  Score
Name                  
Alice     25.0   80.0
Bob       29.5   92.5
Charlie   36.0   86.5

在这个例子中,数据按 Name 列分组,并计算每个名字的 AgeScore 的平均值。groupby() 方法允许对分组数据执行各种聚合操作,如 mean()sum()count() 等。

数据重塑(Reshaping)

数据重塑涉及将数据从一种格式转换为另一种格式。Pandas 提供了多种方法来重塑数据结构,以下是常用的堆叠(stack)操作。

堆叠(Stack)

stack() 方法将 DataFrame 的列“堆叠”为行,将宽格式数据转换为长格式。

# 示例数据
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35],'Score': [85, 90, 88]
})# 使用 stack() 方法将数据堆叠
stacked = df.stack()
print(stacked)

输出结果如下:

0  Name     AliceAge         26Score       85
1  Name       BobAge         30Score       90
2  Name   CharlieAge         35Score       88
dtype: object

在此示例中,stack() 将原本的列转换为行,将每个数据点进行堆叠。这种格式在多维数据处理中非常有用。

数据透视表(Pivot Tables)

数据透视表是一种用于汇总和分析多维数据的工具。Pandas 的 pivot_table() 方法使得创建数据透视表变得简单。

创建透视表

我们可以使用 pivot_table() 方法,基于特定列的值进行聚合分析。

# 示例数据
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35, 24, 29, 37],'Score': [85, 90, 88, 75, 95, 85]
})# 创建透视表
pivot = df.pivot_table(values='Age', index='Name', aggfunc='mean')
print(pivot)

输出结果如下:

          Age
Name          
Alice     25.0
Bob       29.5
Charlie   36.0

在这个例子中,我们生成了一个透视表,该表根据 Name 分组,并计算每个名字的平均年龄。

时间序列(TimeSeries)

时间序列数据在数据分析中扮演着重要角色,Pandas 提供了一系列工具来处理时间序列数据。

生成日期范围

date_range() 方法用于生成一系列连续的日期,通常用于时间序列数据的初始化。

# 生成日期范围
rng = pd.date_range('2024-01-01', periods=10, freq='D')
print(rng)

输出结果如下:

DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04','2024-01-05', '2024-01-06', '2024-01-07', '2024-01-08','2024-01-09', '2024-01-10'],dtype='datetime64[ns]', freq='D')

处理时间序列数据

使用 Pandas,我们可以轻松创建和操作时间序列数据。

# 创建时间序列数据
ts = pd.Series(range(10), index=rng)
print(ts)

输出结果如下:

2024-01-01    0
2024-01-02    1
2024-01-03    2
2024-01-04    3
2024-01-05    4
2024-01-06    5
2024-01-07    6
2024-01-08    7
2024-01-09    8
2024-01-10    9
Freq: D, dtype: int64

类别型数据(Categoricals)

Pandas 提供了对类别型数据的特殊支持,通过使用类别型数据,可以减少内存使用并加快操作速度。

转换为类别型数据

使用 astype('category') 方法可以将数据列转换为类别型数据。

# 示例数据
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35, 24, 29, 37]
})# 将 Name 列转换为类别型数据
df['Category'] = df['Name'].astype('category')
print(df['Category'])

输出结果如下:

0      Alice
1        Bob
2    Charlie
3      Alice
4        Bob
5    Charlie
Name: Category, dtype: category
Categories (3, object): ['Alice', 'Bob', 'Charlie']

数据可视化

Pandas 内置了简单的绘图功能,可以快速生成图表,以便更直观地分析数据。

绘制折线图

通过 plot() 方法,Pandas 可以快速绘制折线图,帮助我们观察数据的趋势。

# 绘制折线图
df = pd.DataFrame({'Date': pd.date_range('2024-01-01', periods=5),'Value': [1, 3, 2, 4, 5]
})df.plot(x='Date', y='Value')

这个示例中,plot() 方法会自动选择适当的绘图类型,并生成日期与数值的折线图。

绘制柱状图

你也可以使用 plot(kind='bar') 来绘制柱状图,以对比不同类别的数值。

# 绘制柱状图
df['Value'].plot(kind='bar')

这种柱状图适合用于对比不同类别或时间段内的数值,便于快速了解各类数据之间的差异。

这篇关于【Python】Pandas:数据分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137746

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid