【Python】Pandas:数据分析

2024-09-05 02:44
文章标签 python pandas 数据分析

本文主要是介绍【Python】Pandas:数据分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pandas 是 Python 中功能强大的数据分析工具,用于处理和分析结构化数据。本文将通过分步骤的方式,详细介绍如何使用 Pandas 进行数据分组、重塑、透视表、时间序列处理、类别型数据管理以及数据可视化。这些知识点将帮助初学者快速上手并掌握 Pandas 的核心功能。

数据分组(Grouping)

数据分组是数据分析中的常见操作,Pandas 的 groupby() 方法允许我们按列对数据进行分组,然后对每个组执行聚合运算,如计算平均值、总和等。

按列分组并计算平均值

在数据分析中,经常需要根据某一列对数据进行分组,并计算每个组的统计指标。以下是按 Name 列分组并计算每组 Age 列平均值的示例:

import pandas as pd# 示例数据
data = {'Name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35, 24, 29, 37],'Score': [85, 90, 88, 75, 95, 85]
}df = pd.DataFrame(data)# 按 Name 列分组,并计算每组的平均值
grouped = df.groupby('Name').mean()
print(grouped)

输出结果如下:

          Age  Score
Name                  
Alice     25.0   80.0
Bob       29.5   92.5
Charlie   36.0   86.5

在这个例子中,数据按 Name 列分组,并计算每个名字的 AgeScore 的平均值。groupby() 方法允许对分组数据执行各种聚合操作,如 mean()sum()count() 等。

数据重塑(Reshaping)

数据重塑涉及将数据从一种格式转换为另一种格式。Pandas 提供了多种方法来重塑数据结构,以下是常用的堆叠(stack)操作。

堆叠(Stack)

stack() 方法将 DataFrame 的列“堆叠”为行,将宽格式数据转换为长格式。

# 示例数据
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35],'Score': [85, 90, 88]
})# 使用 stack() 方法将数据堆叠
stacked = df.stack()
print(stacked)

输出结果如下:

0  Name     AliceAge         26Score       85
1  Name       BobAge         30Score       90
2  Name   CharlieAge         35Score       88
dtype: object

在此示例中,stack() 将原本的列转换为行,将每个数据点进行堆叠。这种格式在多维数据处理中非常有用。

数据透视表(Pivot Tables)

数据透视表是一种用于汇总和分析多维数据的工具。Pandas 的 pivot_table() 方法使得创建数据透视表变得简单。

创建透视表

我们可以使用 pivot_table() 方法,基于特定列的值进行聚合分析。

# 示例数据
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35, 24, 29, 37],'Score': [85, 90, 88, 75, 95, 85]
})# 创建透视表
pivot = df.pivot_table(values='Age', index='Name', aggfunc='mean')
print(pivot)

输出结果如下:

          Age
Name          
Alice     25.0
Bob       29.5
Charlie   36.0

在这个例子中,我们生成了一个透视表,该表根据 Name 分组,并计算每个名字的平均年龄。

时间序列(TimeSeries)

时间序列数据在数据分析中扮演着重要角色,Pandas 提供了一系列工具来处理时间序列数据。

生成日期范围

date_range() 方法用于生成一系列连续的日期,通常用于时间序列数据的初始化。

# 生成日期范围
rng = pd.date_range('2024-01-01', periods=10, freq='D')
print(rng)

输出结果如下:

DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04','2024-01-05', '2024-01-06', '2024-01-07', '2024-01-08','2024-01-09', '2024-01-10'],dtype='datetime64[ns]', freq='D')

处理时间序列数据

使用 Pandas,我们可以轻松创建和操作时间序列数据。

# 创建时间序列数据
ts = pd.Series(range(10), index=rng)
print(ts)

输出结果如下:

2024-01-01    0
2024-01-02    1
2024-01-03    2
2024-01-04    3
2024-01-05    4
2024-01-06    5
2024-01-07    6
2024-01-08    7
2024-01-09    8
2024-01-10    9
Freq: D, dtype: int64

类别型数据(Categoricals)

Pandas 提供了对类别型数据的特殊支持,通过使用类别型数据,可以减少内存使用并加快操作速度。

转换为类别型数据

使用 astype('category') 方法可以将数据列转换为类别型数据。

# 示例数据
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35, 24, 29, 37]
})# 将 Name 列转换为类别型数据
df['Category'] = df['Name'].astype('category')
print(df['Category'])

输出结果如下:

0      Alice
1        Bob
2    Charlie
3      Alice
4        Bob
5    Charlie
Name: Category, dtype: category
Categories (3, object): ['Alice', 'Bob', 'Charlie']

数据可视化

Pandas 内置了简单的绘图功能,可以快速生成图表,以便更直观地分析数据。

绘制折线图

通过 plot() 方法,Pandas 可以快速绘制折线图,帮助我们观察数据的趋势。

# 绘制折线图
df = pd.DataFrame({'Date': pd.date_range('2024-01-01', periods=5),'Value': [1, 3, 2, 4, 5]
})df.plot(x='Date', y='Value')

这个示例中,plot() 方法会自动选择适当的绘图类型,并生成日期与数值的折线图。

绘制柱状图

你也可以使用 plot(kind='bar') 来绘制柱状图,以对比不同类别的数值。

# 绘制柱状图
df['Value'].plot(kind='bar')

这种柱状图适合用于对比不同类别或时间段内的数值,便于快速了解各类数据之间的差异。

这篇关于【Python】Pandas:数据分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137746

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目