【Python】Pandas:数据分析

2024-09-05 02:44
文章标签 python pandas 数据分析

本文主要是介绍【Python】Pandas:数据分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pandas 是 Python 中功能强大的数据分析工具,用于处理和分析结构化数据。本文将通过分步骤的方式,详细介绍如何使用 Pandas 进行数据分组、重塑、透视表、时间序列处理、类别型数据管理以及数据可视化。这些知识点将帮助初学者快速上手并掌握 Pandas 的核心功能。

数据分组(Grouping)

数据分组是数据分析中的常见操作,Pandas 的 groupby() 方法允许我们按列对数据进行分组,然后对每个组执行聚合运算,如计算平均值、总和等。

按列分组并计算平均值

在数据分析中,经常需要根据某一列对数据进行分组,并计算每个组的统计指标。以下是按 Name 列分组并计算每组 Age 列平均值的示例:

import pandas as pd# 示例数据
data = {'Name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35, 24, 29, 37],'Score': [85, 90, 88, 75, 95, 85]
}df = pd.DataFrame(data)# 按 Name 列分组,并计算每组的平均值
grouped = df.groupby('Name').mean()
print(grouped)

输出结果如下:

          Age  Score
Name                  
Alice     25.0   80.0
Bob       29.5   92.5
Charlie   36.0   86.5

在这个例子中,数据按 Name 列分组,并计算每个名字的 AgeScore 的平均值。groupby() 方法允许对分组数据执行各种聚合操作,如 mean()sum()count() 等。

数据重塑(Reshaping)

数据重塑涉及将数据从一种格式转换为另一种格式。Pandas 提供了多种方法来重塑数据结构,以下是常用的堆叠(stack)操作。

堆叠(Stack)

stack() 方法将 DataFrame 的列“堆叠”为行,将宽格式数据转换为长格式。

# 示例数据
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35],'Score': [85, 90, 88]
})# 使用 stack() 方法将数据堆叠
stacked = df.stack()
print(stacked)

输出结果如下:

0  Name     AliceAge         26Score       85
1  Name       BobAge         30Score       90
2  Name   CharlieAge         35Score       88
dtype: object

在此示例中,stack() 将原本的列转换为行,将每个数据点进行堆叠。这种格式在多维数据处理中非常有用。

数据透视表(Pivot Tables)

数据透视表是一种用于汇总和分析多维数据的工具。Pandas 的 pivot_table() 方法使得创建数据透视表变得简单。

创建透视表

我们可以使用 pivot_table() 方法,基于特定列的值进行聚合分析。

# 示例数据
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35, 24, 29, 37],'Score': [85, 90, 88, 75, 95, 85]
})# 创建透视表
pivot = df.pivot_table(values='Age', index='Name', aggfunc='mean')
print(pivot)

输出结果如下:

          Age
Name          
Alice     25.0
Bob       29.5
Charlie   36.0

在这个例子中,我们生成了一个透视表,该表根据 Name 分组,并计算每个名字的平均年龄。

时间序列(TimeSeries)

时间序列数据在数据分析中扮演着重要角色,Pandas 提供了一系列工具来处理时间序列数据。

生成日期范围

date_range() 方法用于生成一系列连续的日期,通常用于时间序列数据的初始化。

# 生成日期范围
rng = pd.date_range('2024-01-01', periods=10, freq='D')
print(rng)

输出结果如下:

DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04','2024-01-05', '2024-01-06', '2024-01-07', '2024-01-08','2024-01-09', '2024-01-10'],dtype='datetime64[ns]', freq='D')

处理时间序列数据

使用 Pandas,我们可以轻松创建和操作时间序列数据。

# 创建时间序列数据
ts = pd.Series(range(10), index=rng)
print(ts)

输出结果如下:

2024-01-01    0
2024-01-02    1
2024-01-03    2
2024-01-04    3
2024-01-05    4
2024-01-06    5
2024-01-07    6
2024-01-08    7
2024-01-09    8
2024-01-10    9
Freq: D, dtype: int64

类别型数据(Categoricals)

Pandas 提供了对类别型数据的特殊支持,通过使用类别型数据,可以减少内存使用并加快操作速度。

转换为类别型数据

使用 astype('category') 方法可以将数据列转换为类别型数据。

# 示例数据
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35, 24, 29, 37]
})# 将 Name 列转换为类别型数据
df['Category'] = df['Name'].astype('category')
print(df['Category'])

输出结果如下:

0      Alice
1        Bob
2    Charlie
3      Alice
4        Bob
5    Charlie
Name: Category, dtype: category
Categories (3, object): ['Alice', 'Bob', 'Charlie']

数据可视化

Pandas 内置了简单的绘图功能,可以快速生成图表,以便更直观地分析数据。

绘制折线图

通过 plot() 方法,Pandas 可以快速绘制折线图,帮助我们观察数据的趋势。

# 绘制折线图
df = pd.DataFrame({'Date': pd.date_range('2024-01-01', periods=5),'Value': [1, 3, 2, 4, 5]
})df.plot(x='Date', y='Value')

这个示例中,plot() 方法会自动选择适当的绘图类型,并生成日期与数值的折线图。

绘制柱状图

你也可以使用 plot(kind='bar') 来绘制柱状图,以对比不同类别的数值。

# 绘制柱状图
df['Value'].plot(kind='bar')

这种柱状图适合用于对比不同类别或时间段内的数值,便于快速了解各类数据之间的差异。

这篇关于【Python】Pandas:数据分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137746

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操