【Python】Pandas:数据分析

2024-09-05 02:44
文章标签 python pandas 数据分析

本文主要是介绍【Python】Pandas:数据分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pandas 是 Python 中功能强大的数据分析工具,用于处理和分析结构化数据。本文将通过分步骤的方式,详细介绍如何使用 Pandas 进行数据分组、重塑、透视表、时间序列处理、类别型数据管理以及数据可视化。这些知识点将帮助初学者快速上手并掌握 Pandas 的核心功能。

数据分组(Grouping)

数据分组是数据分析中的常见操作,Pandas 的 groupby() 方法允许我们按列对数据进行分组,然后对每个组执行聚合运算,如计算平均值、总和等。

按列分组并计算平均值

在数据分析中,经常需要根据某一列对数据进行分组,并计算每个组的统计指标。以下是按 Name 列分组并计算每组 Age 列平均值的示例:

import pandas as pd# 示例数据
data = {'Name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35, 24, 29, 37],'Score': [85, 90, 88, 75, 95, 85]
}df = pd.DataFrame(data)# 按 Name 列分组,并计算每组的平均值
grouped = df.groupby('Name').mean()
print(grouped)

输出结果如下:

          Age  Score
Name                  
Alice     25.0   80.0
Bob       29.5   92.5
Charlie   36.0   86.5

在这个例子中,数据按 Name 列分组,并计算每个名字的 AgeScore 的平均值。groupby() 方法允许对分组数据执行各种聚合操作,如 mean()sum()count() 等。

数据重塑(Reshaping)

数据重塑涉及将数据从一种格式转换为另一种格式。Pandas 提供了多种方法来重塑数据结构,以下是常用的堆叠(stack)操作。

堆叠(Stack)

stack() 方法将 DataFrame 的列“堆叠”为行,将宽格式数据转换为长格式。

# 示例数据
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35],'Score': [85, 90, 88]
})# 使用 stack() 方法将数据堆叠
stacked = df.stack()
print(stacked)

输出结果如下:

0  Name     AliceAge         26Score       85
1  Name       BobAge         30Score       90
2  Name   CharlieAge         35Score       88
dtype: object

在此示例中,stack() 将原本的列转换为行,将每个数据点进行堆叠。这种格式在多维数据处理中非常有用。

数据透视表(Pivot Tables)

数据透视表是一种用于汇总和分析多维数据的工具。Pandas 的 pivot_table() 方法使得创建数据透视表变得简单。

创建透视表

我们可以使用 pivot_table() 方法,基于特定列的值进行聚合分析。

# 示例数据
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35, 24, 29, 37],'Score': [85, 90, 88, 75, 95, 85]
})# 创建透视表
pivot = df.pivot_table(values='Age', index='Name', aggfunc='mean')
print(pivot)

输出结果如下:

          Age
Name          
Alice     25.0
Bob       29.5
Charlie   36.0

在这个例子中,我们生成了一个透视表,该表根据 Name 分组,并计算每个名字的平均年龄。

时间序列(TimeSeries)

时间序列数据在数据分析中扮演着重要角色,Pandas 提供了一系列工具来处理时间序列数据。

生成日期范围

date_range() 方法用于生成一系列连续的日期,通常用于时间序列数据的初始化。

# 生成日期范围
rng = pd.date_range('2024-01-01', periods=10, freq='D')
print(rng)

输出结果如下:

DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04','2024-01-05', '2024-01-06', '2024-01-07', '2024-01-08','2024-01-09', '2024-01-10'],dtype='datetime64[ns]', freq='D')

处理时间序列数据

使用 Pandas,我们可以轻松创建和操作时间序列数据。

# 创建时间序列数据
ts = pd.Series(range(10), index=rng)
print(ts)

输出结果如下:

2024-01-01    0
2024-01-02    1
2024-01-03    2
2024-01-04    3
2024-01-05    4
2024-01-06    5
2024-01-07    6
2024-01-08    7
2024-01-09    8
2024-01-10    9
Freq: D, dtype: int64

类别型数据(Categoricals)

Pandas 提供了对类别型数据的特殊支持,通过使用类别型数据,可以减少内存使用并加快操作速度。

转换为类别型数据

使用 astype('category') 方法可以将数据列转换为类别型数据。

# 示例数据
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob', 'Charlie'],'Age': [26, 30, 35, 24, 29, 37]
})# 将 Name 列转换为类别型数据
df['Category'] = df['Name'].astype('category')
print(df['Category'])

输出结果如下:

0      Alice
1        Bob
2    Charlie
3      Alice
4        Bob
5    Charlie
Name: Category, dtype: category
Categories (3, object): ['Alice', 'Bob', 'Charlie']

数据可视化

Pandas 内置了简单的绘图功能,可以快速生成图表,以便更直观地分析数据。

绘制折线图

通过 plot() 方法,Pandas 可以快速绘制折线图,帮助我们观察数据的趋势。

# 绘制折线图
df = pd.DataFrame({'Date': pd.date_range('2024-01-01', periods=5),'Value': [1, 3, 2, 4, 5]
})df.plot(x='Date', y='Value')

这个示例中,plot() 方法会自动选择适当的绘图类型,并生成日期与数值的折线图。

绘制柱状图

你也可以使用 plot(kind='bar') 来绘制柱状图,以对比不同类别的数值。

# 绘制柱状图
df['Value'].plot(kind='bar')

这种柱状图适合用于对比不同类别或时间段内的数值,便于快速了解各类数据之间的差异。

这篇关于【Python】Pandas:数据分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137746

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e