深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning

本文主要是介绍深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

偏理论,假设情况不易发生

摘要

多智能体强化学习的换道策略,不同的智能体在每一轮学习后交换策略,达到零和博弈。

和谐驾驶仅依赖于单个车辆有限的感知结果来平衡整体和个体效率,奖励机制结合个人效率和整体效率的和谐。

Ⅰ. 简介

自动驾驶不能过分要求速度性能,

考虑单个车辆的厌恶和所在路段的整体交通效率的奖励函数,适当的混合以提高整体的交通效率。

章节安排:

  1. 简介

  2. 和谐变道的深度强化学习模型

  3. 模拟器设计

  4. 实验设置和所提出的策略在训练和测试中的仿真结果

  5. 模型的一些有趣问题

  6. 总结

Ⅱ. 协调换道的深度强化学习模型

image-20240116222711519

A. 问题呈现和DRL模型
1)状态空间:

每个车辆的状态由:三个连续帧的交通快照和实际速度与预期速度之间的相应速度差组成。

拍摄交通快照来研究车辆周围的情况。

M t ( i ) M_t^{(i)} Mt(i)用二维矩阵表示车辆周围的占有网格(存在车辆的网格为1,空网格为0)

S被输入到DQN。

2)动作空间:

a t ( i ) a_t^{(i)} at(i)为车辆i的动作,包括改变到左/右道路和保持当前车道。

减速不在当前中,设置了单独的碰撞检查过程修改速度。

3)奖励函数:

r t ( i ) r_t^{(i)} rt(i)车辆行驶效率,与其他车辆的协调性和总体交通流率之间的权衡。

r v ( i ) r_v^{(i)} rv(i)是车辆个体形式效率的奖励, r c l ( i ) r_{cl}^{(i)} rcl(i)是变道的惩罚, r q r_q rq是交通流率的奖励。

α {\alpha} α是换道行为的协调系数。

频繁变道会使得交通流率下降,对于每个换道行为我们从奖励中减去 α {\alpha} α来作为惩罚。

α {\alpha} α使得车辆学习一个温和的变道策略,限制不必要的变道。

q t {q_t} qt是所研究车辆周围的流量

R s c a l e R_{scale} Rscale是一个缩放系数保持 r q r_q rq的幅度和 r v ( i ) r_v^{(i)} rv(i) r c l ( i ) r_{cl}^{(i)} rcl(i)的一致性。

B. 深度强化学习算法

DQN学习有效的变道决策机制,输入 s t ( i ) s_t^{(i)} st(i)到DQN,输出 a t ( i ) a_t^{(i)} at(i)

代理的经验存储在数据集 D t {D_t} Dt

在学习模型时,从Dt中均匀抽取样本以计算以下损失函数(TD误差),随机梯度下降更新参数

基于DQN Q值的贪婪策略选择并执行策略。

每个仿真车辆共享一个共同的RL模型作为上层决策者,并为自己维护一个低层运动控制器。

变道决策DQN

快照进入两层CNN,然后通过级联层与速度差级联。

将数据送入两层全连接Q网络,得到a作为高级驾驶策略

送到低级控制器,用于每个车辆的低级运动命令

更深层的深度强化学习没有获得更好的效果

Ⅲ. 仿真平台

平台流水线概括为以下:

  1. 根据上游流入率在道路起点生成新车辆。
  2. 从所提出的换道模型中获取环境数据并得到驾驶决策。
  3. 计算每辆车的适当速度,并执行驾驶决策。
    1. 在每次迭代中,纵向速度和横向速度,t将分别由车辆跟随模型和车道变换模型计算。
  4. 执行碰撞检查过程并更新所有车辆的位置。
    1. 在步骤4)中将执行碰撞检查过程,以修改纵向速度以确保安全。

问题

多智能体每轮学习后交换策略。

个人效率和整体效率的和谐。

这篇关于深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/614353

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

SpringBoot如何通过Map实现策略模式

《SpringBoot如何通过Map实现策略模式》策略模式是一种行为设计模式,它允许在运行时选择算法的行为,在Spring框架中,我们可以利用@Resource注解和Map集合来优雅地实现策略模式,这... 目录前言底层机制解析Spring的集合类型自动装配@Resource注解的行为实现原理使用直接使用M

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动