一种基于YOLO改进的高效且轻量级的表面缺陷检测网络, NEU-DET和GC10-DET涨点明显

本文主要是介绍一种基于YOLO改进的高效且轻量级的表面缺陷检测网络, NEU-DET和GC10-DET涨点明显,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💡💡💡本文摘要:一种基于YOLO改进的高效且轻量级的表面缺陷检测, 在NEU-DET和GC10-DET任务中涨点明显

目录

1.轻量且高效的YOLO

1.1 SCRB介绍

1.1.1 ScConv介绍

 1.2 GSConvns

 1.3 od_mobilenetv2_050

1.4  对应yaml

2.实验结果

3.源码获取


1.轻量且高效的YOLO

轻量且高效的YOLO网络结构

1.1 SCRB介绍

 其实ScConv和Bottleneck的基础上,和C3进行结合。

1.1.1 ScConv介绍

原文链接:Yolov8引入CVPR2023 SCConv:空间和通道重建卷积,即插即用,助力检测_scconv 2023-CSDN博客

  

 论文:https://openaccess.thecvf.com/content/CVPR2023/papers/Li_SCConv_Spatial_and_Channel_Reconstruction_Convolution_for_Feature_Redundancy_CVPR_2023_paper.pdf

         卷积神经网络(CNN)已经实现在各种计算机视觉任务中表现出色,但这是以巨大的计算成本为代价的资源,部分原因是卷积层提取冗余特征。 在本文中,我们尝试利用特征之间的空间和通道冗余,针对 CNN 压缩,提出了一种高效的卷积模块,称为 SCConv(空间和通道重建卷积),以减少冗余计算,并促进代表性特征学习。 提出的 SCConv 由两个单元组成:空间重建单元(SRU)和通道重建单元(CRU)。 SRU利用分离重建方法来抑制空间冗余,而CRU使用分割-变换-融合策略来减少通道冗余。 此外,SCConv 是一个即插即用的架构单元,可以可以直接用来替代各种卷积神经网络中的标准卷积。 实验结果表明SCConv 嵌入式模型能够实现更好的效果
通过减少冗余特征来显着降低复杂性和计算成本来提高性能。

        SCConv 的结构包括了空间重建单元(SRU)和通道重建单元(CRU)。 下图显示了我们的 SCConv 模块添加在 ResBlock 中的确切位置 。

SRU结构: 

 CRU结构:

 1.2 GSConvns

YoloV8优化:轻量级Slim-Neck | 即插即用系列_slim-neck 是怎么改进-CSDN博客

 

 论文地址:https://arxiv.org/ftp/arxiv/papers/2206/2206.02424.pdf

github: GitHub - AlanLi1997/slim-neck-by-gsconv: Pytorch implementation of the 'Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles'

 本文贡献:

  1. 引入了一种新方法 GSConv 来代替 SC 操作。该方法使卷积计算的输出尽可能接近 SC,同时降低计算成本;

  2. 提供了一种新的设计范式,即带有标准 Backbone 的 Slim-Neck 设计;

图2(a)和(b)展示了深度可分离卷积(DSC )和标准卷积(SC)的网络结构,但是深度可分离卷积这种设陷导致特征提取和融合能力比 SC 低得多。 

为了使 DSC 的输出尽可能接近 SC,引入了一种新方法——GSConv,使用 shuffle 将 SC 生成的信息(密集卷积操作)渗透到 DSC 生成的信息的每个部分。

     采用 GSConv 方法的 Slim-Neck 可缓解 DSC 缺陷对模型的负面影响,并充分利用深度可分离卷积 DSC 的优势。

 1.3 od_mobilenetv2_050

其实就是od_mobilenetv2_050替换了backbone

1.4  对应yaml

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, od_mobilenetv2_050, [odconv4x mobilenetv2 050.pth.tar path, 4]], # 4[-1, 1, SPPF, [1024, 5]],  # 5]# YOLOv5 v6.0 head
head:[[-1, 1, GSConvns, [512, 1, 1]], # 6[-1, 1, nn.Upsample, [None, 2, 'nearest']],# 7[[-1, 3], 1, Concat, [1]],  # cat backbone P4 8[-1, 3, SCRB, [512, False]],  # 9[-1, 1, GSConvns, [256, 1, 1]], # 10[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11[[-1, 2], 1, Concat, [1]],  # cat backbone P3 12[-1, 3, SCRB, [256, False]],  # 13 (P3/8-small)[-1, 1, GSConvns, [256, 3, 2]], # 14[[-1, 10], 1, Concat, [1]],  # cat head P4 15[-1, 3, SCRB, [512, False]],  # 16 (P4/16-medium)[-1, 1, GSConvns, [512, 3, 2]], # 17[[-1, 5], 1, Concat, [1]],  # cat head P5 18[-1, 3, SCRB, [1024, False]],  # 19 (P5/32-large)[[13, 16, 19], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

2.实验结果

我们的方法在NEU-DET和GC10-DET上取得了更好的性能。具体指标见表一、表二。

NEU-DEU任务 

 GC10-DET任务PR result plot on NEU-DET

PR result plot on GC10-DET 

Visualization of detection results 

3.源码获取

可私信获取

这篇关于一种基于YOLO改进的高效且轻量级的表面缺陷检测网络, NEU-DET和GC10-DET涨点明显的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/613164

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设