【BestCoder Round 65B】【博弈 对称思想】ZYB's Game 范围取数都知道x谁取到x谁必败

本文主要是介绍【BestCoder Round 65B】【博弈 对称思想】ZYB's Game 范围取数都知道x谁取到x谁必败,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ZYB's Game

Accepts: 672
Submissions: 1207
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 65536/65536 K (Java/Others)
问题描述
ZYBZYB在远足中,和同学们玩了一个“数字炸弹”游戏:由主持人心里想一个在[1,N][1,N]中的数字XX,然后玩家们轮流猜一个数字,如果一个玩家恰好猜中XX则算负,否则主持人将告诉全场的人当前的数和XX比是偏大还是偏小,然后猜测的范围就会相应减小,一开始的范围是[1,N][1,N].每个玩家只能在合法的范围中猜测.现在假设只有两个人在玩这个游戏,并且两个人都已经知道了最后的XX,若两个人都采取最优策略.求X \in [1,N]X[1,N]中是后手胜利的XX数量.
输入描述
第一行一个整数TT表示数据组数。接下来TT行,每行一个正整数NN.1 \leq T \leq 1000001T100000,1 \leq N \leq 100000001N10000000
输出描述
TT行每行一个整数表示答案.
输入样例
1
3
输出样例
1

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=0,M=0,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int n;
int main()
{scanf("%d",&casenum);for(casei=1;casei<=casenum;++casei){scanf("%d",&n);printf("%d\n",n&1);}return 0;
}
/*
【题意】
Alice和Bob做猜数游戏,Alice先手。
已知数x是[1,n]中的任意一个,Alice,Bob和裁判都知道是哪一个。
每个人猜数的时候,裁判会告诉你,当前猜的数比答案大还是比答案小。
于是我们猜的范围只能逐渐减小。两个人都采取最优决策。最后,猜中x的哪个人算输。
问你,存在多少个x,使得后手的人必胜。【类型】
博弈 对称思想【分析】
当n==1,后手在x==1时必胜
当n==2,后手必败
当n==3,后手在x==2时必胜
当n==4,后手必败
当n==5,后手在x==3时必胜我们已经发现了——
当n为偶数,偶数必败。
当n为奇数,后手仅在x==(n+1)/2时必胜。为什么有这个结论呢?
我们可以运用博弈比较常见的对称性思想——
如果x是最中间的数,先手不论怎么取,我们想,后手只要对称着来就好啦。
于是最后一次取数肯定是先手取走了x,所以先手必败。
如果x不是最中间的数,那么先手必然可以通过一步取数,使得x变成最中间的数。于是先手必胜。呀,对称性思想真是棒。一下子我们就完成证明了哦。【时间复杂度&&优化】
O(1)*/

这篇关于【BestCoder Round 65B】【博弈 对称思想】ZYB's Game 范围取数都知道x谁取到x谁必败的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610450

相关文章

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

poj2505(典型博弈)

题意:n = 1,输入一个k,每一次n可以乘以[2,9]中的任何一个数字,两个玩家轮流操作,谁先使得n >= k就胜出 这道题目感觉还不错,自己做了好久都没做出来,然后看了解题才理解的。 解题思路:能进入必败态的状态时必胜态,只能到达胜态的状态为必败态,当n >= K是必败态,[ceil(k/9.0),k-1]是必胜态, [ceil(ceil(k/9.0)/2.0),ceil(k/9.

hdu3389(阶梯博弈变形)

题意:有n个盒子,编号1----n,每个盒子内有一些小球(可以为空),选择一个盒子A,将A中的若干个球移到B中,满足条件B  < A;(A+B)%2=1;(A+B)%3=0 这是阶梯博弈的变形。 先介绍下阶梯博弈: 在一个阶梯有若干层,每层上放着一些小球,两名选手轮流选择一层上的若干(不能为0)小球从上往下移动,最后一次移动的胜出(最终状态小球都在地面上) 如上图所示,小球数目依次为

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

Codeforces Round #261 (Div. 2)小记

A  XX注意最后输出满足条件,我也不知道为什么写的这么长。 #define X first#define Y secondvector<pair<int , int> > a ;int can(pair<int , int> c){return -1000 <= c.X && c.X <= 1000&& -1000 <= c.Y && c.Y <= 1000 ;}int m

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

fzu 2275 Game KMP

Problem 2275 Game Time Limit: 1000 mSec    Memory Limit : 262144 KB  Problem Description Alice and Bob is playing a game. Each of them has a number. Alice’s number is A, and Bob’s number i

AI模型的未来之路:全能与专精的博弈与共生

人工智能(AI)领域正迅速发展,伴随着技术的不断进步,AI模型的应用范围也在不断扩展。当前,AI模型的设计和使用面临两个主要趋势:全能型模型和专精型模型。这两者之间的博弈与共生将塑造未来的AI技术格局。本文将从以下七个方面探讨AI模型的未来之路,并提供实用的代码示例,以助于研究人员和从业者更好地理解和应用这些技术。 一、AI模型的全面评估与比较 1.1 全能型模型 全能型AI模型旨在在多