Ransac随机采样一致性拟合——圆柱

2024-01-14 19:36

本文主要是介绍Ransac随机采样一致性拟合——圆柱,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、RANSAC拟合方法原理

二、PCL圆柱拟合模型

三、实现代码

四、实现结果


这篇关于Ransac随机采样一致性拟合——圆柱的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/606276

相关文章

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

MySQL中一致性非锁定读

一致性非锁定读(consistent nonlocking read)是指InnoDB存储引擎通过多版本控制(multi versionning)的方式来读取当前执行时间数据库中行的数据,如果读取的行正在执行DELETE或UPDATE操作,这是读取操作不会因此等待行上锁的释放。相反的,InnoDB会去读取行的一个快照数据 上面展示了InnoDB存储引擎一致性的非锁定读。之所以称为非锁定读,因

InnoDB的多版本一致性读的实现

InnoDB是支持MVCC多版本一致性读的,因此和其他实现了MVCC的系统如Oracle,PostgreSQL一样,读不会阻塞写,写也不会阻塞读。虽然同样是MVCC,各家的实现是不太一样的。Oracle通过在block头部的事务列表,和记录中的锁标志位,加上回滚段,个人认为实现上是最优雅的方式。 而PostgreSQL则更是将多个版本的数据都放在表中,而没有单独的回滚段,导致的一个结果是回滚非

PHP: 深入了解一致性哈希

前言 随着memcache、redis以及其它一些内存K/V数据库的流行,一致性哈希也越来越被开发者所了解。因为这些内存K/V数据库大多不提供分布式支持(本文以redis为例),所以如果要提供多台redis server来提供服务的话,就需要解决如何将数据分散到redis server,并且在增减redis server时如何最大化的不令数据重新分布,这将是本文讨论的范畴。 取模算法 取模运

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

AI学习指南深度学习篇-带动量的随机梯度下降法简介

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随

HDD 顺序和随机文件拷贝和存储优化策略

对于机械硬盘(HDD),顺序拷贝和随机拷贝涉及到磁头的移动方式和数据的读取/写入模式。理解这些概念对于优化硬盘性能和管理文件操作非常重要。 1. 顺序拷贝 定义: 顺序拷贝指的是数据从硬盘的一个位置到另一个位置按顺序连续读取和写入。这意味着数据在硬盘上的位置是线性的,没有跳跃或回溯。 特点: 磁头移动最小化:由于数据是连续的,磁头在读取或写入数据时只需要在磁盘的一个方向上移动,减少了寻道时

重复采样魔法:用更多样本击败单次尝试的最强模型

这篇文章探讨了通过增加生成样本的数量来扩展大型语言模型(LLMs)在推理任务中的表现。 研究发现,重复采样可以显著提高模型的覆盖率,特别是在具有自动验证工具的任务中。研究还发现,覆盖率与样本数量之间的关系可以用指数幂律建模,揭示了推理时间的扩展规律。尽管多数投票和奖励模型在样本数量增加时趋于饱和,但在没有自动验证工具的任务中,识别正确样本仍然是一个重要的研究方向。 总体而言,重复采样提供了一种

算法:将数组随机打乱顺序,生成一个新的数组

一、思路 核心:缩小原数组的可随机取数范围 1、创建一个与原数组长度相同的新数组; 2、从原数组的有效的可取数范围 (不断缩小) 中随机取出一个数据,添加进新的数组; 3、将取出的随机数与原数组的最后一个数据进行置换; 4、重复步骤2和3。 二、代码 public class ArrayRandomTest {//将数组随机打乱顺序,生成一个新的数组public static int