深度学习方法(十六):Batch Normalization及其变种——Layer Norm, Group Norm,Weight Norm等

本文主要是介绍深度学习方法(十六):Batch Normalization及其变种——Layer Norm, Group Norm,Weight Norm等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

很久没写博文了,今天晚上得点空, 抽时间把一块很基础的Layer设计——归一化层写一下,主要是方便自己日后查阅。写的可能会有点慢,有空就写一点。

本文的内容包括:

  • Batch Normalization
  • Layer Normalization
  • Instance Normalization
  • Group Normalization
  • Weight Normalization
  • Batch Renormalization
  • Spectral Normalization for GAN

Batch Normalization

第一篇肯定要讲下BN,现在BN基本上成为CNN类网络的标配,它通过缩放每一层Feature map值至均值0,方差1,让Feature map的分布在训练过程中不要发生大的变化,以此来加速网络的收敛。论文提到,这个就是受CV里面“白化Whitening”的启发,Whitening在很多图像处理中运用。

至于论文通篇在讲的为了避免 internal covariate shift,似乎略有牵强,在今年ICLR上还有专门文章问题原论文中该观点是错误的,就不细说了,感兴趣的同学建议还是去看下原文[1],我想这么多Normalization论文,至少要看看这一篇最经典的。

需要注意的是BN在训练过程和推理过程计算步骤是一样的,区别在于均值方差的来源。训练时来自于当前mini-batch统计而来;而推理时是通过整个之前的训练过程得到,因此是fix的。

BN在训练阶段的前向过程如下:
在这里插入图片描述

Mini-batch就是指在一个计算device上,一次计算的图片张数(假设数据是图片),在这个Mini-batch上统计出mean、variance,然后做normalize,最后为了让Feature Map可以缩放,又重新引入了较为简单的 γ \gamma γ β \beta β。在数量上,每一个输出的channel会各有1个mean,var, γ \gamma γ β \beta β

BN的训练反向如果不想细看也可以不看,因为BN整个过程是可微的,因此在当前的framework下都可以自动完成反向传播。过程如下:

在这里插入图片描述
很基础的链式求导法则,通过前面的前向过程反过来求导,可以一步一步的推出上述结果。

BN所处的位置:一般是紧跟在Conv或者FC层之后,激活函数之前,即Conv - BN - Scale - Relu。当然,也有一些论文研究BN到底应该放在哪,目前看也并没有必然,毕竟BN只是起了一个归一化的作用,不同地方对不同网络有好有坏。BN有一个很大的作用就是:宣布了从12年Alexnet开始的Local Response Normalization层的结束,从BN之后基本没有再用LRN层了(这个层计算真的很变扭)。

Layer Norm,Instance Norm,Group Norm

在这里插入图片描述
借用He Kaiming大神的论文[2]中的图,简单总结了一下这几种类型的差异。
都要做归一化操作:
在这里插入图片描述
而均值方差计算公式都是:
在这里插入图片描述
唯一的区别就是计算均值方差的范围不同。

  • Layer Norm:因为BN需要统计一个小batch,但是当batch太小比如=1,2这样的时候,BN有时候会有些问题,因此有人设计出了LN,即对整个样本自己统计一组mean和var,而无需关心其他样本。
  • Instance Norn:会每个样本的每个channel统计一组mean和var
  • Group Norm:取了一个折中,每个样本的部分channel统计一组mean和var

后面还有一个Scale层,就是在这里插入图片描述
一律都是per-channel的 γ \gamma γ β \beta β,上述几个方法都是一致的。

Weight Normalization

这篇和前面的思路不同,是通过限制Weight的范围来让训练变得更快,方法非常简单:不直接训练W,而是训练v和g

在这里插入图片描述
v和w一样size,g是一个标量,让w可以有比较容易地缩放。这个过程本身就是可微的,在framework中比较容易实现。论文还提到了一句,为了让g伸缩更快,可以采用exponential parameterization,即 g = e s g = e^s g=es,然后优化的是s。但是论文说通过实验,发现似乎没有明显的差异。

参考资料

[1] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
[2] Group Normalization
[3] Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
[4]
[5]

这篇关于深度学习方法(十六):Batch Normalization及其变种——Layer Norm, Group Norm,Weight Norm等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/600104

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

mysql中的group by高级用法

《mysql中的groupby高级用法》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,下面给大家介绍mysql中的groupby用法... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认