深度学习方法(十六):Batch Normalization及其变种——Layer Norm, Group Norm,Weight Norm等

本文主要是介绍深度学习方法(十六):Batch Normalization及其变种——Layer Norm, Group Norm,Weight Norm等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

很久没写博文了,今天晚上得点空, 抽时间把一块很基础的Layer设计——归一化层写一下,主要是方便自己日后查阅。写的可能会有点慢,有空就写一点。

本文的内容包括:

  • Batch Normalization
  • Layer Normalization
  • Instance Normalization
  • Group Normalization
  • Weight Normalization
  • Batch Renormalization
  • Spectral Normalization for GAN

Batch Normalization

第一篇肯定要讲下BN,现在BN基本上成为CNN类网络的标配,它通过缩放每一层Feature map值至均值0,方差1,让Feature map的分布在训练过程中不要发生大的变化,以此来加速网络的收敛。论文提到,这个就是受CV里面“白化Whitening”的启发,Whitening在很多图像处理中运用。

至于论文通篇在讲的为了避免 internal covariate shift,似乎略有牵强,在今年ICLR上还有专门文章问题原论文中该观点是错误的,就不细说了,感兴趣的同学建议还是去看下原文[1],我想这么多Normalization论文,至少要看看这一篇最经典的。

需要注意的是BN在训练过程和推理过程计算步骤是一样的,区别在于均值方差的来源。训练时来自于当前mini-batch统计而来;而推理时是通过整个之前的训练过程得到,因此是fix的。

BN在训练阶段的前向过程如下:
在这里插入图片描述

Mini-batch就是指在一个计算device上,一次计算的图片张数(假设数据是图片),在这个Mini-batch上统计出mean、variance,然后做normalize,最后为了让Feature Map可以缩放,又重新引入了较为简单的 γ \gamma γ β \beta β。在数量上,每一个输出的channel会各有1个mean,var, γ \gamma γ β \beta β

BN的训练反向如果不想细看也可以不看,因为BN整个过程是可微的,因此在当前的framework下都可以自动完成反向传播。过程如下:

在这里插入图片描述
很基础的链式求导法则,通过前面的前向过程反过来求导,可以一步一步的推出上述结果。

BN所处的位置:一般是紧跟在Conv或者FC层之后,激活函数之前,即Conv - BN - Scale - Relu。当然,也有一些论文研究BN到底应该放在哪,目前看也并没有必然,毕竟BN只是起了一个归一化的作用,不同地方对不同网络有好有坏。BN有一个很大的作用就是:宣布了从12年Alexnet开始的Local Response Normalization层的结束,从BN之后基本没有再用LRN层了(这个层计算真的很变扭)。

Layer Norm,Instance Norm,Group Norm

在这里插入图片描述
借用He Kaiming大神的论文[2]中的图,简单总结了一下这几种类型的差异。
都要做归一化操作:
在这里插入图片描述
而均值方差计算公式都是:
在这里插入图片描述
唯一的区别就是计算均值方差的范围不同。

  • Layer Norm:因为BN需要统计一个小batch,但是当batch太小比如=1,2这样的时候,BN有时候会有些问题,因此有人设计出了LN,即对整个样本自己统计一组mean和var,而无需关心其他样本。
  • Instance Norn:会每个样本的每个channel统计一组mean和var
  • Group Norm:取了一个折中,每个样本的部分channel统计一组mean和var

后面还有一个Scale层,就是在这里插入图片描述
一律都是per-channel的 γ \gamma γ β \beta β,上述几个方法都是一致的。

Weight Normalization

这篇和前面的思路不同,是通过限制Weight的范围来让训练变得更快,方法非常简单:不直接训练W,而是训练v和g

在这里插入图片描述
v和w一样size,g是一个标量,让w可以有比较容易地缩放。这个过程本身就是可微的,在framework中比较容易实现。论文还提到了一句,为了让g伸缩更快,可以采用exponential parameterization,即 g = e s g = e^s g=es,然后优化的是s。但是论文说通过实验,发现似乎没有明显的差异。

参考资料

[1] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
[2] Group Normalization
[3] Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
[4]
[5]

这篇关于深度学习方法(十六):Batch Normalization及其变种——Layer Norm, Group Norm,Weight Norm等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/600104

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Git中恢复已删除分支的几种方法

《Git中恢复已删除分支的几种方法》:本文主要介绍在Git中恢复已删除分支的几种方法,包括查找提交记录、恢复分支、推送恢复的分支等步骤,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录1. 恢复本地删除的分支场景方法2. 恢复远程删除的分支场景方法3. 恢复未推送的本地删除分支场景方法4. 恢复

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,