本文主要是介绍强化学习3——马尔可夫性质、马尔科夫决策、状态转移矩阵和回报与策略(下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
马尔可夫决策过程组成
策略
智能体的策略policy通常用 π \pi π 表示,即 π ( a ∣ s ) = P ( A t = a ∣ S t = s ) \pi (a|s)=P(A_t=a|S_t=s) π(a∣s)=P(At=a∣St=s) ,在输入状态s的情况下采取动作a的概率。
状态价值函数
价值定义为从状态出发遵循策略能获得的期望回报,数学表达为:
V π ( s ) = E π [ G t ∣ S t = s ] V^{\pi}(s)=\mathbb{E}_\pi [G_t|S_t=s] Vπ(s)=Eπ[Gt∣St=s]
动作价值函数
遵循策略时,对当前状态 s 执行动作 a 得到的期望回报:
Q π ( s , a ) = E π [ G t ∣ S t = s , A t = a ] Q^\pi(s,a)=\mathbb{E}_\pi[G_t|S_t=s,A_t=a] Qπ(s,a)=Eπ[Gt∣St=s,At=a]
在使用该策略的情况下,状态s的价值(期望回报)等于该状态下基于此策略采用所有动作的概率与相应价值相乘的和
V π ( s ) = ∑ a ∈ A π ( a ∣ s ) Q π ( s , a ) V^\pi(s)=\sum_{a\in A}\pi(a|s)Q^\pi(s,a) Vπ(s)=a∈A∑π(a∣s)Qπ(s,a)
贝尔曼期望方程
在贝尔曼方程中加上“期望”二字是为了与接下来的贝尔曼最优方程进行区分。
V π ( s ) = E π [ G t ∣ S t = s ] = E π [ R t + γ G t + 1 ∣ S t = s ] \begin{aligned} V^{\pi}(s)&=\mathbb{E}_\pi [G_t|S_t=s]\\ &=\mathbb{E}_\pi [R_t+\gamma G_{t+1}|S_t=s] \end{aligned} Vπ(s)=Eπ[Gt∣St=s]=Eπ[Rt+γGt+1∣St=s]
因为 r 是奖励的期望,那么该策略下的价值为
V π ( s ) = ∑ a ∈ A π ( a ∣ s ) ( r ( s , a ) + γ E π [ G t + 1 ∣ S t = s ] ) V^\pi(s)=\sum_{a\in A}\pi(a|s)(r(s,a)+\gamma \mathbb{E}_\pi [ G_{t+1}|S_t=s]) Vπ(s)=a∈A∑π(a∣s)(r(s,a)+γEπ[Gt+1∣St=s])
注意后面是 G t + 1 G_{t+1} Gt+1 ,而不是 G t G_t Gt ,那么就需要将下一个状态是什么的所有可能性包括在内进行计算,因此引出状态转移概率,得到状态价值函数的贝尔曼方程:
V π ( s ) = ∑ a ∈ A π ( a ∣ s ) ( r ( s , a ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s , a ) V π ( s ′ ) ) V^\pi(s)=\sum_{a\in A}\pi(a|s)\left(r(s,a)+\gamma\sum_{s'\in S}p(s'|s,a)V^{\pi}(s')\right) Vπ(s)=a∈A∑π(a∣s)(r(s,a)+γs′∈S∑p(s′∣s,a)Vπ(s′))
下一个状态的概率乘以下一个状态的期望,求和之后,则为所有可能发生的状态对应的期望的期望。
去掉前面的策略求和,可得动作价值函数的贝尔曼方程:
Q π ( s , a ) = r ( s , a ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s , a ) ∑ a ′ ∈ A π ( a ′ ∣ s ′ ) Q π ( s ′ , a ′ ) Q^{\pi}(s,a)=r(s,a)+\gamma\sum_{s^{\prime}\in S}p(s^{\prime}|s,a)\sum_{a^{\prime}\in A}\pi(a^{\prime}|s^{\prime})Q^\pi(s^{\prime},a^{\prime}) Qπ(s,a)=r(s,a)+γs′∈S∑p(s′∣s,a)a′∈A∑π(a′∣s′)Qπ(s′,a′)
最优策略
总有一个策略大于等于所有策略,称之为最优策略。
V ∗ ( s ) = max a ∈ A { r ( s , a ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s , a ) V ∗ ( s ′ ) } Q ∗ ( s , a ) = r ( s , a ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s , a ) max a ′ ∈ A Q ∗ ( s ′ , a ′ ) \begin{gathered}V^*(s)=\max_{a\in\mathcal{A}}\{r(s,a)+\gamma\sum_{s^{\prime}\in\mathcal{S}}p(s^{\prime}|s,a)V^*(s^{\prime})\}\\Q^*(s,a)=r(s,a)+\gamma\sum_{s^{\prime}\in\mathcal{S}}p(s^{\prime}|s,a)\max_{a^{\prime}\in\mathcal{A}}Q^*(s^{\prime},a^{\prime})\end{gathered} V∗(s)=a∈Amax{r(s,a)+γs′∈S∑p(s′∣s,a)V∗(s′)}Q∗(s,a)=r(s,a)+γs′∈S∑p(s′∣s,a)a′∈AmaxQ∗(s′,a′)
这篇关于强化学习3——马尔可夫性质、马尔科夫决策、状态转移矩阵和回报与策略(下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!