本文主要是介绍YOLOv5独家原创改进:新颖的Shape IoU结合 Inner-IoU,基于辅助边框的IoU损失的同时关注边界框本身的形状和尺度,小目标实现高效涨点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
💡💡💡本文改进:一种新的Shape IoU方法结合 Inner-IoU,基于辅助边框的IoU损失的同时,更加关注边界框本身的形状和尺度来计算损失
💡💡💡对小目标检测涨点明显,在VisDrone2019、PASCAL VOC均有涨点
收录
YOLOv5原创自研
https://blog.csdn.net/m0_63774211/category_12511931.html
💡💡💡全网独家首发创新(原创),适合paper !!!
💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!
💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网
这篇关于YOLOv5独家原创改进:新颖的Shape IoU结合 Inner-IoU,基于辅助边框的IoU损失的同时关注边界框本身的形状和尺度,小目标实现高效涨点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!