池化层的downsampling翻译成下采样。降采样咋样?

2024-01-04 04:19

本文主要是介绍池化层的downsampling翻译成下采样。降采样咋样?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

都说是下采样,翻译成降采样不香吗?

上采样(up-sampling),叫过采样不好么?

不就是采样的数据量和采样率的差距么。

这篇关于池化层的downsampling翻译成下采样。降采样咋样?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/568137

相关文章

NC 把数字翻译成字符串

系列文章目录 文章目录 系列文章目录前言 前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 描述 有一种将字母编码成数字的方式:‘a’->1, ‘b->2’, … , ‘z->26’。 现在给一串数字,返回有多少种可能的译码结果 import java.u

重复采样魔法:用更多样本击败单次尝试的最强模型

这篇文章探讨了通过增加生成样本的数量来扩展大型语言模型(LLMs)在推理任务中的表现。 研究发现,重复采样可以显著提高模型的覆盖率,特别是在具有自动验证工具的任务中。研究还发现,覆盖率与样本数量之间的关系可以用指数幂律建模,揭示了推理时间的扩展规律。尽管多数投票和奖励模型在样本数量增加时趋于饱和,但在没有自动验证工具的任务中,识别正确样本仍然是一个重要的研究方向。 总体而言,重复采样提供了一种

研究纹理采样器在像素级别的采样位置

问题 【纹理采样器】是一个基础的概念。假设有一个正方形面片,顶点的UV范围是0.0~1.0,那么在这个正方形面片上采样一张纹理时,会呈现出完整的纹理。 但我现在关注的问题是,在像素级别上,采样的位置是怎样的。具体来讲:对于UV值是(0.0,0.0)的点,它对应的采样位置是纹理最左上角像素的中心?还是纹理最左上角像素的左上角?即,下面左右哪个是正确的情况? 在宏观上,尤其是像素较多的时候,二者

爆改YOLOv8|利用yolov10的SCDown改进yolov8-下采样

1, 本文介绍 YOLOv10 的 SCDown 方法来优化 YOLOv8 的下采样过程。SCDown 通过点卷积调整通道维度,再通过深度卷积进行空间下采样,从而减少了计算成本和参数数量。这种方法不仅降低了延迟,还在保持下采样过程信息的同时提供了竞争性的性能。 关于SCDown 的详细介绍可以看论文:https://arxiv.org/pdf/2405.14458 本文将讲解如何将SCDow

JVM为什么要多一步翻译成class文件的理由之一

简单说:因为Java的想法很伟大,并不只是想给Java语言用,而是脚踏多只船,只要其他语言能翻译成class文件他也能执行 Java虚拟机(JVM)不仅限于执行Java编写的程序,还支持执行其他编译成JVM字节码(即.class文件)的语言。这种能力使得JVM成为一个多语言的平台,因为任何语言只要能编译成JVM字节码,就可以在JVM上运行。这种设计具有很大的灵活性和扩展性,允许不同编程语言

优化采样参数提升大语言模型响应质量:深入分析温度、top_p、top_k和min_p的随机解码策略

当向大语言模型(LLM)提出查询时,模型会为其词汇表中的每个可能标记输出概率值。从这个概率分布中采样一个标记后,我们可以将该标记附加到输入提示中,使LLM能够继续输出下一个标记的概率。这个采样过程可以通过诸如 temperature 和 top_p 等参数进行精确控制。但是你是否曾深入思考过temperature和top_p参数的具体作用? 本文将详细解析并可视化定义LLM输出行为的

word2vec 两个模型,两个加速方法 负采样加速Skip-gram模型 层序Softmax加速CBOW模型 item2vec 双塔模型 (DSSM双塔模型)

推荐领域(DSSM双塔模型): https://www.cnblogs.com/wilson0068/p/12881258.html   word2vec  word2vec笔记和实现 理解 Word2Vec 之 Skip-Gram 模型 上面这两个链接能让你彻底明白word2vec,不要搞什么公式,看完也是不知所云,也没说到本质. 目前用的比较多的都是Skip-gram模型 Go

YoloV10改进策略:下采样改进|自研下采样模块(独家改进)|疯狂涨点|附结构图

文章目录 摘要自研下采样模块及其变种第一种改进方法 YoloV10官方测试结果改进方法测试结果总结 摘要 本文介绍我自研的下采样模块。本次改进的下采样模块是一种通用的改进方法,你可以用分类任务的主干网络中,也可以用在分割和超分的任务中。已经有粉丝用来改进ConvNext模型,取得了非常好的效果,配合一些其他的改进,发一篇CVPR、ECCV之类的顶会完全没有问题。 本次我将这个模

CUDAPCL 点云体素下采样

文章目录 一、简介二、实现代码三、实现效果参考资料 一、简介 体素下采样是指使用常规体素网格从输入点云创建均匀下采样的点云。它经常被用作许多点云处理任务的预处理步骤。该算法分为两步操作: (1)并行的将每个点分配到其所处的体素中。 (2)并行遍历所有体素,并求取每个体素中所有点的质心点。 二、实现代码 VoxelSample.cuh #ifndef VOXELS

Open3D 体素随机下采样

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 三、实现效果 3.1原始点云 3.2体素下采样后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         体素随机下采样是一种常用的点云简化方法,通过将点云划分为立方体体素网格,并从每个体素中随机