爆改YOLOv8|利用yolov10的SCDown改进yolov8-下采样

2024-09-06 20:28

本文主要是介绍爆改YOLOv8|利用yolov10的SCDown改进yolov8-下采样,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1, 本文介绍

YOLOv10 的 SCDown 方法来优化 YOLOv8 的下采样过程。SCDown 通过点卷积调整通道维度,再通过深度卷积进行空间下采样,从而减少了计算成本和参数数量。这种方法不仅降低了延迟,还在保持下采样过程信息的同时提供了竞争性的性能。

关于SCDown 的详细介绍可以看论文:https://arxiv.org/pdf/2405.14458

本文将讲解如何将SCDown 融合进yolov8

话不多说,上代码!

2, 将SCDown 融合进yolov8

2.1 步骤一

找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个SCDown.py文件,文件名字可以根据你自己的习惯起,然后将SCDown的核心代码复制进去


import torch
import torch.nn as nn__all__ = ['SCDown']def autopad(k, p=None, d=1):  # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class SCDown(nn.Module):def __init__(self, c1, c2, k=3, s=1):super().__init__()self.cv1 = Conv(c1, c2, 1, 1)self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)def forward(self, x):return self.cv2(self.cv1(x))

2.2 步骤二

在task.py导入我们的模块

from .modules.SCDown import SCDown

2.3 步骤三

在task.py的parse_model方法里面注册我们的模块

到此注册成功,复制后面的yaml文件直接运行即可

yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, SCDown, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, SCDown, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, SCDown, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, SCDown, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, SCDown, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, SCDown, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

# 关于SCDown添加的位置可以自行调试,针对不同数据集位置不同,效果不同

不知不觉已经看完了哦,动动小手留个点赞吧--_--

这篇关于爆改YOLOv8|利用yolov10的SCDown改进yolov8-下采样的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143031

相关文章

一种改进的red5集群方案的应用、基于Red5服务器集群负载均衡调度算法研究

转自: 一种改进的red5集群方案的应用: http://wenku.baidu.com/link?url=jYQ1wNwHVBqJ-5XCYq0PRligp6Y5q6BYXyISUsF56My8DP8dc9CZ4pZvpPz1abxJn8fojMrL0IyfmMHStpvkotqC1RWlRMGnzVL1X4IPOa_  基于Red5服务器集群负载均衡调度算法研究 http://ww

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户

YOLOv8改进实战 | 注意力篇 | 引入CVPR2024 PKINet 上下文锚点注意力CAAttention

YOLOv8专栏导航:点击此处跳转 前言 YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。 YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以

【YOLO 系列】基于YOLOV8的智能花卉分类检测系统【python源码+Pyqt5界面+数据集+训练代码】

前言: 花朵作为自然界中的重要组成部分,不仅在生态学上具有重要意义,也在园艺、农业以及艺术领域中占有一席之地。随着图像识别技术的发展,自动化的花朵分类对于植物研究、生物多样性保护以及园艺爱好者来说变得越发重要。为了提高花朵分类的效率和准确性,我们启动了基于YOLO V8的花朵分类智能识别系统项目。该项目利用深度学习技术,通过分析花朵图像,自动识别并分类不同种类的花朵,为用户提供一个高效的花朵识别

YOLOv8改进 | Conv篇 | YOLOv8引入DWR

1. DWR介绍 1.1  摘要:当前的许多工作直接采用多速率深度扩张卷积从一个输入特征图中同时捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。 然而,这种设计可能会因为结构和超参数的不合理而导致多尺度上下文信息的访问困难。 为了降低多尺度上下文信息的绘制难度,我们提出了一种高效的多尺度特征提取方法,将原始的单步方法分解为区域残差-语义残差两个步骤。 在该方法中,多速率深度扩张卷积

yolov8 pt转onnx

第一步: 安装onnx pip install --upgrade onnx 第二步: 将以下代码创建、拷贝到yolov8根目录下。具体代码test.py: from ultralytics import YOLO# Load a modelmodel = YOLO('yolov8n.pt') # load an official model# Export the model

基于YOLOv10的垃圾检测系统

基于YOLOv10的垃圾检测系统  (价格90) 包含    ['CardBoard', 'Glass', 'Metal', 'Paper', 'Plastic']     5个类             ['纸板', '玻璃', '金属', '纸张', '塑料'] 通过PYQT构建UI界面,包含图片检测,视频检测,摄像头实时检测。 (该系统可以根据数据训练出的yolov10的权

重复采样魔法:用更多样本击败单次尝试的最强模型

这篇文章探讨了通过增加生成样本的数量来扩展大型语言模型(LLMs)在推理任务中的表现。 研究发现,重复采样可以显著提高模型的覆盖率,特别是在具有自动验证工具的任务中。研究还发现,覆盖率与样本数量之间的关系可以用指数幂律建模,揭示了推理时间的扩展规律。尽管多数投票和奖励模型在样本数量增加时趋于饱和,但在没有自动验证工具的任务中,识别正确样本仍然是一个重要的研究方向。 总体而言,重复采样提供了一种

目标检测-YOLOv8

YOLOv8 YOLOv8 是 YOLO 系列的最新版本,它在 YOLOv7 的基础上进行了多项改进,主要侧重于进一步提升推理速度、检测精度以及模型的通用性。与之前版本相比,YOLOv8 引入了新的技术和优化策略,使其在多个方面更具优势。 相比 YOLOv7 的改进与优势 更加轻量化的网络架构 YOLOv8 进一步简化了网络结构,引入了新型的 EfficientRep 主干网络,在保证性能

基于yolov8的包装盒纸板破损缺陷测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的包装盒纸板破损缺陷检测系统是一种高效、智能的解决方案,旨在提高生产线上包装盒纸板的质量检测效率与准确性。该系统利用YOLOv8这一前沿的深度学习模型,通过其强大的目标检测能力,能够实时识别并标记出包装盒纸板上的各种破损缺陷,如划痕、撕裂、孔洞等。 在系统中,首先需对包含破损缺陷的包装盒纸板图像进行数据采集和标注,形成训练数据集。随后,利用这些数据进行模型训练,使