本文主要是介绍爆改YOLOv8|利用yolov10的SCDown改进yolov8-下采样,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1, 本文介绍
YOLOv10 的 SCDown 方法来优化 YOLOv8 的下采样过程。SCDown 通过点卷积调整通道维度,再通过深度卷积进行空间下采样,从而减少了计算成本和参数数量。这种方法不仅降低了延迟,还在保持下采样过程信息的同时提供了竞争性的性能。
关于SCDown 的详细介绍可以看论文:https://arxiv.org/pdf/2405.14458
本文将讲解如何将SCDown 融合进yolov8
话不多说,上代码!
2, 将SCDown 融合进yolov8
2.1 步骤一
找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个SCDown.py文件,文件名字可以根据你自己的习惯起,然后将SCDown的核心代码复制进去
import torch
import torch.nn as nn__all__ = ['SCDown']def autopad(k, p=None, d=1): # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-padreturn pclass Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU() # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class SCDown(nn.Module):def __init__(self, c1, c2, k=3, s=1):super().__init__()self.cv1 = Conv(c1, c2, 1, 1)self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)def forward(self, x):return self.cv2(self.cv1(x))
2.2 步骤二
在task.py导入我们的模块
from .modules.SCDown import SCDown
2.3 步骤三
在task.py的parse_model方法里面注册我们的模块
到此注册成功,复制后面的yaml文件直接运行即可
yaml文件
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, SCDown, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, SCDown, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, SCDown, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, SCDown, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
# 关于SCDown添加的位置可以自行调试,针对不同数据集位置不同,效果不同
不知不觉已经看完了哦,动动小手留个点赞吧--_--
这篇关于爆改YOLOv8|利用yolov10的SCDown改进yolov8-下采样的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!