[足式机器人]Part2 Dr. CAN学习笔记-自动控制原理Ch1-6根轨迹Root locus

本文主要是介绍[足式机器人]Part2 Dr. CAN学习笔记-自动控制原理Ch1-6根轨迹Root locus,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文仅供学习使用
本文参考:
B站:DR_CAN

Dr. CAN学习笔记-自动控制原理Ch1-6根轨迹Root locus

  • 1. 根的作用
  • 2. 手绘技巧
  • 3. 分离点/汇合点&根轨迹的几何性质


1. 根的作用

G ( s ) = s + 3 s 2 + 2 s + 4 G\left( s \right) =\frac{s+3}{s^2+2s+4} G(s)=s2+2s+4s+3
Matlab可绘制 riocus(g)
掌握根的变化规律 , 设计控制器,补偿器 : Compentator Lead Lag…

根 —— 极点

  1. 一阶系统
    在这里插入图片描述
  2. 二阶系统
    在这里插入图片描述
    在这里插入图片描述
  3. 三阶系统
    在这里插入图片描述

在这里插入图片描述

2. 手绘技巧

Matlab可以精确绘制——手绘——掌握根的变化规律——设计控制器

根轨迹的基本形式

在这里插入图片描述
根轨迹研究的是: 当 K K K从0到 + ∞ +\infty +时,闭环系统根(极点)位置的变化规律

1 + K G ( s ) = 0 , G ( s ) = N ( s ) D ( s ) = ( s − z 1 ) ( s − z 2 ) ⋯ ( s − z m ) ( s − p 1 ) ( s − p 2 ) ⋯ ( s − p n ) 1+KG\left( s \right) =0,G\left( s \right) =\frac{N\left( s \right)}{D\left( s \right)}=\frac{\left( s-z_1 \right) \left( s-z_2 \right) \cdots \left( s-z_{\mathrm{m}} \right)}{\left( s-p_1 \right) \left( s-p_2 \right) \cdots \left( s-p_{\mathrm{n}} \right)} 1+KG(s)=0,G(s)=D(s)N(s)=(sp1)(sp2)(spn)(sz1)(sz2)(szm)

其中, z 1 ⋯ z m z_1\cdots z_{\mathrm{m}} z1zm零点 Zeros ⊙ \odot p 1 ⋯ p n p_1\cdots p_{\mathrm{n}} p1pn极点 Poles × \times ×

规则1 :共有 n n n条根轨迹, 若 n > m n>m n>m;共有 m m m条根轨迹,若 m > n m>n m>n ⇐ max ⁡ { m , n } \Leftarrow \max \left\{ m,n \right\} max{m,n}
规则2 :若 m = n m=n m=n,随着 K K K 0 → ∞ 0\rightarrow \infty 0 , 根轨迹从 G ( s ) G\left( s \right) G(s)的极点向零点移动: 1 + K G ( s ) = 0 ⇒ D ( s ) + K N ( s ) = 0 1+KG\left( s \right) =0\Rightarrow D\left( s \right) +KN\left( s \right) =0 1+KG(s)=0D(s)+KN(s)=0 K → 0 K\rightarrow 0 K0 D ( s ) = 0 D\left( s \right) =0 D(s)=0(极点); K → ∞ K\rightarrow \infty K N ( s ) = 0 N\left( s \right) =0 N(s)=0 (零点)
规则3:实轴上的根轨迹存在于从右向左第奇数个极点/零点的左边
规则4:若附属跟存在,则一定是共轭的,所以根轨迹通过实轴对称
规则5:若 n > m n>m n>m , 则有 n − m n-m nm个极点指向无穷;若 m > n m>n m>n , 则有 m − n m-n mn条根轨迹从无穷指向零点
规则6:根轨迹延渐近线移动,渐近线与实轴的交点 σ = ∑ p − ∑ z n − m \sigma =\frac{\sum{p}-\sum{z}}{n-m} σ=nmpz渐近线与实轴的夹角 θ = 2 q + 1 n − m π , q = 0 , 1 , . . . , n − m − 1 / m − n − 1 \theta =\frac{2q+1}{n-m}\pi ,q=0,1,...,n-m-1/m-n-1 θ=nm2q+1π,q=0,1,...,nm1/mn1
在这里插入图片描述

3. 分离点/汇合点&根轨迹的几何性质

以 2nd-order system 为例:
在这里插入图片描述
Properties of Root locus
在这里插入图片描述

这篇关于[足式机器人]Part2 Dr. CAN学习笔记-自动控制原理Ch1-6根轨迹Root locus的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/552039

相关文章

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI