本文主要是介绍《PCL》kdtree,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
若searchPoint为待搜索点云之外,则…
若searchPoint为待搜索点云之内,则第一个点为其本身,已经验证过。
- K搜索
#include <pcl/point_cloud.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <vector>pcl::KdTreeFLANN<pcl::PointXYZ>kdtree;
kdtree.setInputCloud(cloud);
pcl::PointXYZ searchPoint;
int K = 10;
std::vector<int>pointIdxNKNSearch(K);
std::vector<float>Distance(K);
kdtree.nearestKSearch(searchPoint, K, pointIdxNKNSearch, Distance)
- 半径r搜索
#include <pcl/point_cloud.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <vector>pcl::KdTreeFLANN<pcl::PointXYZ>kdtree;
kdtree.setInputCloud(cloud);
pcl::PointXYZ searchPoint;
float radius;
std::vector<int> pointIdxRadiusSearch;
std::vector<float> Distance;
kdtree.radiusSearch(searchPoint, radius, pointIdxRadiusSearch, Distance)
- 对点云进行索引计算
此时,当keypoints为全部点云时,即计算索引。
#include <pcl/point_cloud.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <vector>void getIndices (pointcloud::Ptr cloudin, pointcloud keypoints, pcl::PointIndices::Ptr indices)
{pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;kdtree.setInputCloud(cloudin);std::vector<float>pointNKNSquareDistance; //近邻点集的距离std::vector<int> pointIdxNKNSearch;for (size_t i =0; i < keypoints.size();i++){kdtree.nearestKSearch(keypoints.points[i],1,pointIdxNKNSearch,pointNKNSquareDistance);// cout<<"the distance is:"<<pointNKNSquareDistance[0]<<endl;// cout<<"the indieces is:"<<pointIdxNKNSearch[0]<<endl;indices->indices.push_back(pointIdxNKNSearch[0]); }
}
4.FLANN近邻查找 获取点云平均距离
只是 计算了 前一半索引号的点云距离平均值。
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
kdtree.setInputCloud(cloud);
int K=2;
float allDistance=0 ,average = 0;
for(size_t i=0; i < cloud.size()/2; i++)
{vector<int> indicexK;vector<float> distanceK;kdtree.nearestKSearch(cloud->point[i], K, indicesK, distanceK);allDistance +=sqrt(distanceK[1]);
}
average = allDistance / cloud.size()/2;
这篇关于《PCL》kdtree的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!