PyTorch深度学习实战(26)——卷积自编码器(Convolutional Autoencoder)

本文主要是介绍PyTorch深度学习实战(26)——卷积自编码器(Convolutional Autoencoder),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PyTorch深度学习实战(26)——卷积自编码器

    • 0. 前言
    • 1. 卷积自编码器
    • 2. 使用 t-SNE 对相似图像进行分组
    • 小结
    • 系列链接

0. 前言

我们已经学习了自编码器 (AutoEncoder) 的原理,并使用 PyTorch 搭建了全连接自编码器,但我们使用的数据集较为简单,每张图像只有一个通道(每张图像都为黑白图像)且图像相对较小 (28 x 28)。但在现实场景中,图像数据通常为彩色图像( 3 个通道)且图像尺寸通常较大。在本节中,我们将实现能够处理多维输入图像的卷积自编码器,为了与普通自编码器进行对比,同样使用 MNIST 数据集。

1. 卷积自编码器

与传统的全连接自编码器不同,卷积自编码器 (Convolutional Autoencoder) 利用卷积层和池化层替代了全连接层,以处理具有高维空间结构的图像数据。这样的设计使得卷积自编码器能够在较少的参数量下对输入数据进行降维和压缩,同时保留重要的空间特征。卷积自编码器架构如下所示:

卷积自编码器

从上图中可以看出,输入图像被表示为瓶颈层中的潜空间变量,用于重建图像。图像经过多次卷积(编码器)得到低维潜空间表示,然后在解码器中,将潜空间变量还原为原始尺寸,使解码器的输出能够近似恢复原始输入。
本质上,卷积自编码器在其网络中使用卷积、池化操作来代替原始自编码器的全连接操作,并使用反卷积操作 (Conv2DTranspose) 对特征图进行上采样。了解卷积自编码器的原理后,使用 PyTorch 实现此架构。

(1) 数据集的加载和构建方式与全连接自编码器完全相同:

from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torchvision.utils import make_grid
import numpy as np
from matplotlib import pyplot as plt
device = 'cuda' if torch.cuda.is_available() else 'cpu'img_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.5], [0.5]),transforms.Lambda(lambda x: x.to(device))
])trn_ds = MNIST('MNIST/', transform=img_transform, train=True, download=True)
val_ds = MNIST('MNIST/', transform=img_transform, train=False, download=True)batch_size = 256
trn_dl = DataLoader(trn_ds, batch_size=batch_size, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=batch_size, shuffle=False)

(2) 定义神经网络类 ConvAutoEncoder

定义 __init__ 方法:

class ConvAutoEncoder(nn.Module):def __init__(self):super().__init__()

定义编码器架构:

        self.encoder = nn.Sequential(nn.Conv2d(1, 32, 3, stride=3, padding=1), nn.ReLU(True),nn.MaxPool2d(2, stride=2),nn.Conv2d(32, 64, 3, stride=2, padding=1), nn.ReLU(True),nn.MaxPool2d(2, stride=1))

在以上代码中,通道数最初由 1 开始,逐渐增加到 64,同时通过 nn.MaxPool2dnn.Conv2d 操作减小输入图像尺寸。

定义解码器架构:

        self.decoder = nn.Sequential(nn.ConvTranspose2d(64, 32, 3, stride=2), nn.ReLU(True),nn.ConvTranspose2d(32, 16, 5, stride=3, padding=1), nn.ReLU(True),nn.ConvTranspose2d(16, 1, 2, stride=2, padding=1), nn.Tanh())

定义前向传播方法 forward

    def forward(self, x):x = self.encoder(x)x = self.decoder(x)return x

(3) 使用 summary 方法获取模型摘要信息:

model = ConvAutoEncoder().to(device)
from torchsummary import summary
summary(model, (1,28,28))
输出结果如下所示:
```shell
----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1           [-1, 32, 10, 10]             320ReLU-2           [-1, 32, 10, 10]               0MaxPool2d-3             [-1, 32, 5, 5]               0Conv2d-4             [-1, 64, 3, 3]          18,496ReLU-5             [-1, 64, 3, 3]               0MaxPool2d-6             [-1, 64, 2, 2]               0ConvTranspose2d-7             [-1, 32, 5, 5]          18,464ReLU-8             [-1, 32, 5, 5]               0ConvTranspose2d-9           [-1, 16, 15, 15]          12,816ReLU-10           [-1, 16, 15, 15]               0ConvTranspose2d-11            [-1, 1, 28, 28]              65Tanh-12            [-1, 1, 28, 28]               0
================================================================
Total params: 50,161
Trainable params: 50,161
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.14
Params size (MB): 0.19
Estimated Total Size (MB): 0.34
----------------------------------------------------------------

从以上模型架构信息可以看出,使用尺寸为 batch size x 64 x 2 x 2MaxPool2d-6 层作为瓶颈层。

模型训练过程,训练和验证损失随时间的变化以及对输入图像的重建结果如下:

def train_batch(input, model, criterion, optimizer):model.train()optimizer.zero_grad()output = model(input)loss = criterion(output, input)loss.backward()optimizer.step()return loss@torch.no_grad()
def validate_batch(input, model, criterion):model.eval()output = model(input)loss = criterion(output, input)return lossmodel = ConvAutoEncoder().to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=1e-5)num_epochs = 20
train_loss_epochs = []
val_loss_epochs = []
for epoch in range(num_epochs):N = len(trn_dl)trn_loss = []val_loss = []for ix, (data, _) in enumerate(trn_dl):loss = train_batch(data, model, criterion, optimizer)pos = (epoch + (ix+1)/N)trn_loss.append(loss.item())train_loss_epochs.append(np.average(trn_loss))N = len(val_dl)for ix, (data, _) in enumerate(val_dl):loss = validate_batch(data, model, criterion)pos = epoch + (1+ix)/Nval_loss.append(loss.item())val_loss_epochs.append(np.average(val_loss))epochs = np.arange(num_epochs)+1
plt.plot(epochs, train_loss_epochs, 'bo', label='Training loss')
plt.plot(epochs, val_loss_epochs, 'r-', label='Test loss')
plt.title('Training and Test loss over increasing epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.grid('off')
plt.show()for _ in range(5):ix = np.random.randint(len(val_ds))im, _ = val_ds[ix]_im = model(im[None])[0]plt.subplot(121)# fig, ax = plt.subplots(1,2,figsize=(3,3)) plt.imshow(im[0].detach().cpu(), cmap='gray')plt.title('input')plt.subplot(122)plt.imshow(_im[0].detach().cpu(), cmap='gray')plt.title('prediction')plt.show()

模型性能监测图像重建结果图像重建结果

从上图中,我们可以看到卷积自编码器重建后的图像比全连接自编码器更清晰,可以通过改变编码器和解码器中的通道数,观察模型训练结果。在下一节中,我们将根据瓶颈层潜变量对相似图像进行分组

2. 使用 t-SNE 对相似图像进行分组

假设相似的图像具有相似的潜变量(也称嵌入),而不相似的图像具有不同的潜变量,使用自编码器,可以在低维空间中表示图像。接下来,我们继续学习图像的相似度度量,在二维空间中绘制潜变量,使用 t-SNE 技术将卷积自编码器的 64 维向量缩减至到 2 维空间。
2 维空间中,我们可以方便的可视化潜变量,以观察相似图像是否具有相似的潜变量,相似图像在二维平面中应该聚集在一起。接下里,我们在二维平面中表示所有测试图像的潜变量。

(1) 初始化列表,以便存储潜变量 (latent_vectors) 和相应的图像类别(存储每个图像的类别只是为了验证同一类别的图像是否具有较高的相似性,并不会在训练过程使用):

latent_vectors = []
classes = []

(2) 遍历验证数据加载器 (val_dl) 中的图像,并存储编码器的输出 (model.encoder(im).view(len(im),-1)) 和每个图像 (im) 对应的类别 (clss):

for im,clss in val_dl:latent_vectors.append(model.encoder(im).view(len(im),-1))classes.extend(clss)

(3) 连接潜变量 (latent_vectors) NumPy 数组:

latent_vectors = torch.cat(latent_vectors).cpu().detach().numpy()

(4) 导入 t-SNE 库 (TSNE),并将潜变量转换为二维向量 (TSNE(2)) ,以便进行绘制:

from sklearn.manifold import TSNE
tsne = TSNE(2)

(5) 通过在图像潜变量 (latent_vectors) 上运行 fit_transform 方法来拟合 t-SNE

clustered = tsne.fit_transform(latent_vectors)

(6) 拟合 t-SNE 后绘制数据点:

fig = plt.figure(figsize=(12,10))
cmap = plt.get_cmap('Spectral', 10)
plt.scatter(*zip(*clustered), c=classes, cmap=cmap)
plt.colorbar(drawedges=True)
plt.show()

聚类结果

可以看到同一类别的图像能够聚集在一起,即相似的图像将具有相似的潜变量值。

小结

卷积自编码器是一种基于卷积神经网络结构的自编码器,适用于处理图像数据。卷积自编码器在图像处理领域有广泛的应用,包括图像去噪、图像压缩、图像生成等任务。通过训练卷积自编码器,可以提取出输入图像的关键特征,并实现对图像数据的降维和压缩,同时保留重要的空间信息。在本节中,我们介绍了卷积自编码器的模型架构,使用 PyTorch 从零开始实现在 MNIST 数据集上训练了一个简单的卷积自编码器,并使用 t-SNE 技术在二维平面中表示了所有测试图像的潜变量。

系列链接

PyTorch深度学习实战(1)——神经网络与模型训练过程详解
PyTorch深度学习实战(2)——PyTorch基础
PyTorch深度学习实战(3)——使用PyTorch构建神经网络
PyTorch深度学习实战(4)——常用激活函数和损失函数详解
PyTorch深度学习实战(5)——计算机视觉基础
PyTorch深度学习实战(6)——神经网络性能优化技术
PyTorch深度学习实战(7)——批大小对神经网络训练的影响
PyTorch深度学习实战(8)——批归一化
PyTorch深度学习实战(9)——学习率优化
PyTorch深度学习实战(10)——过拟合及其解决方法
PyTorch深度学习实战(11)——卷积神经网络
PyTorch深度学习实战(12)——数据增强
PyTorch深度学习实战(13)——可视化神经网络中间层输出
PyTorch深度学习实战(14)——类激活图
PyTorch深度学习实战(15)——迁移学习
PyTorch深度学习实战(16)——面部关键点检测
PyTorch深度学习实战(17)——多任务学习
PyTorch深度学习实战(18)——目标检测基础
PyTorch深度学习实战(19)——从零开始实现R-CNN目标检测
PyTorch深度学习实战(20)——从零开始实现Fast R-CNN目标检测
PyTorch深度学习实战(21)——从零开始实现Faster R-CNN目标检测
PyTorch深度学习实战(22)——从零开始实现YOLO目标检测
PyTorch深度学习实战(23)——使用U-Net架构进行图像分割
PyTorch深度学习实战(24)——从零开始实现Mask R-CNN实例分割
PyTorch深度学习实战(25)——自编码器(Autoencoder)

这篇关于PyTorch深度学习实战(26)——卷积自编码器(Convolutional Autoencoder)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519605

相关文章

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Linux下MySQL8.0.26安装教程

《Linux下MySQL8.0.26安装教程》文章详细介绍了如何在Linux系统上安装和配置MySQL,包括下载、解压、安装依赖、启动服务、获取默认密码、设置密码、支持远程登录以及创建表,感兴趣的朋友... 目录1.找到官网下载位置1.访问mysql存档2.下载社区版3.百度网盘中2.linux安装配置1.

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06