线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化(上)

2023-12-20 16:50

本文主要是介绍线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小二乘在直线拟合上的应用

在前一篇最小二乘的文章中:

线性代数 --- 投影与最小二乘 下(多元方程组的最小二乘解与向量在多维子空间上的投影)_松下J27的博客-CSDN博客多变量方程组的最小二乘,向量到多维子空间上的投影。https://blog.csdn.net/daduzimama/article/details/129559433?spm=1001.2014.3001.5501

我们知道了:1,正规方程, 2,计算最优解的方法,3,计算投影的方法

        在这篇文章中,我会从最小二乘在拟合直线上的应用开始,先是用实例来说明最小二乘的实际应用。紧接着,我会从这个例子出发,循序渐进的引出为什么我们希望A的列向量不仅仅是相互独立的,更希望他们是相互正交的。从而导出,如何令A的列向量彼此正交,这就是著名的Gram-Schmidt正交化。(需要再次重申的是,学习不是为了考试,不是为了背公式,更不需要题海战术,而是“知其(Gram-Schmidt)然,知其(Gram-Schmidt)所以然”)


拟合直线

        拟合直线可以说是最小二乘最好的应用之一。简而言之,就是用m>2个点(也可以说是m个观测点,及其所对应的m个数据)去拟合一条直线。

        对某个实验而言,如果他的实验结果是线性的,且没有任何实验误差,则两次实验的结果就能确定一条符合这一实验规律的直线b=C+Dt,而且后续所有的实验结果都应当落在这条直线上。假定现有m个实验结果,他们在横坐标上的值为t_{1},t_{2},...,t_{m},他们在纵坐标中所对应的值分别是b_{1},b_{2},...,b_{m}。现在我们用方程b_{i}=C+Dt_{i}表示一条穿过这些点的直线,得到如下方程组:

        如果m个实验结果都没有误差,则,上述方程组有解,且有唯一解C,D。但,如果实验结果有误差,则不可能找到一个完美的C,D,让这条直线穿过所有的点。这是一个(overdetermined system)超定方程组,m>2个方程,2个未知数,方程组无解。用矩阵来表示为:

        因实验结果的误差导致方程组无解,因此,我们只能找一条尽可能贴近所有点的直线。对于矩阵A而言,他有两个列向量,方程组无解,所以无法通过线性组合得到等式右端的列向量。在维持A的两个列向量不变的情况下,我们通过新的线性组合\hat{C}\hat{D},在A的列空间中找到了最接近向量b的向量p,即,b在A的列空间C(A)上的投影。

        同时,也最小化了每个点与直线之间的纵向误差e_{i},即,最小化E={e_{1}}^{2}+{e_{2}}^{2}+...+{e_{m}}^{2}。其中,e_{i}=b_{i}-C-Dt_{i}。(但这不是我推崇的思维,应该优先考虑用投影的角度思考!)

方程左右两边同时乘以A^{T},得到“正规方程(Normal Equation)”:

A^{T}A\hat{x}=A^{T}b(或A^{T}A\hat{x}=Pb,其中P为投影矩阵)

其中等式左边A^{T}A等于:

 等式右边A^{T}b等于:

最终得到A^{T}A\hat{x}=A^{T}b


 Example 1:

 如图(a),在一个实验中的不同时刻t1,t2,t3下,得到三组测量值b1,b3,b3,分别是(注意,他们并不是等间隔的):

 对应的方程组为:

        方程组无解,因为这三点不在一条直线上。通过求解最小二乘方程组,联立正规方程A^{T}A\hat{x}=A^{T}b

\large A=\begin{bmatrix} 1 &-1 \\ 1 &1 \\ 1 &2 \end{bmatrix}                \large \hat{x}=\begin{bmatrix} \hat{C}\\ \hat{D} \end{bmatrix}                \large b=\begin{bmatrix} 1\\ 1\\ 3 \end{bmatrix}

左边A^{T}A

\large \mathbf{A^{T}A=\begin{bmatrix} 1 & 1 &1 \\ -1& 1 & 2 \end{bmatrix} \begin{bmatrix} 1 &-1 \\ 1 &1 \\ 1 &2 \end{bmatrix} = \begin{bmatrix} 3 & 2\\ 2 & 6 \end{bmatrix}}

右边A^{T}b

\large A^{T}b=\begin{bmatrix} 1 &1 &1 \\ -1&1 & 2 \end{bmatrix}\begin{bmatrix} 1\\ 1\\ 3 \end{bmatrix} = \begin{bmatrix} 5\\ 6 \end{bmatrix}

得到:

 最终得到最优解为,\hat{C}=9/7,\hat{D}=4/7。 

 \large \hat{x}=(A^{T}A)^{-1}A^{T}b=\begin{bmatrix} 6 &-2 \\ -2& 3 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 9/7\\ 4/7 \end{bmatrix}

对应的最佳拟合直线为:

\large f(x)=9/7+4/7t

投影p为:

\large p=A(A^{T}A)^{-1}A^{T}b=A\hat{x}=\begin{bmatrix} 1 & -1\\ 1 & 1\\ 1 & 2 \end{bmatrix}\begin{bmatrix} 9/7\\ 4/7 \end{bmatrix}=\begin{bmatrix} 5/7\\ 13/7\\ 17/7 \end{bmatrix}

        现在我们结合下图(b),从投影的角度来回顾一下这个问题。 向量b无法通过矩阵A的两个列向量[1,1,1]和[-1,1,2]通过线性组合得到,因为,b不在A的列空间内。通过把向量b投影到A的列空间上,在A的列空间上找到了一个离向量b最近的向量p,这个投影向量p可以通过A的两个列向量的线性组合得到,线性组合的权重为 \hat{C}=9/7,\hat{D}=4/7 。

 Attention:

        现在,我们已经得到了最优拟合的直线方程f(t)=9/7+4/7t,我们把t=(-1, 1, 2)时在直线上所对应的点求出来,看看有什么神奇的事发生!

当t=-1时,f(t=-1)=9/7-4/7=5/7,当t=1时,f(t=1)=9/7+4/7=13/7,当t=2时,f(t=2)=9/7+8/7=17/7。然后把这些点绘制到图(a)上,并且把图(a)和图(b)放在一起看。

        接下来我们会看到,这两幅图以不同的艺术形式描述了同一个数学问题, 且, 他们是密切相关的

关联1:投影向量p

        最开始,我们在图(a)中,描绘了三个不在同一直线上的数据点(t1=-1,b1=1),(t2=1,b2=1),(t3=2,b3=3)。然后,我们用投影的方式/求解正规方程的方式求得了最小二乘解\large \hat{x},同时也求出了向量b在A的列空间C(A)上的投影向量p=[5/7, 13/7, 17/7],这些都体现在了图(b)中。最后,我们根据最优拟合直线的函数,算出了t=(t1,t2,t3)时在直线上所对应的数据点(t1=-1,p1=5/7),(t2=1,p2=13/7),(t3=2,p3=17/7),并绘制到图(a)中。

        可见,投影向量p中三个元素的值,正好是拟合直线上t所对应的点。对于图(b)而言,用线性代数的语言说,是把b拉到了子空间C(A)上。对于图(a)而言,通过最小化每个点到最优拟合直线上的距离e1,e2,e3,把本不在同一直线上的三个点b1,b2,b3拉到了同一条直线上。且p1,p2,p3正好等于投影向量p中元素的值。

        换句话说,“把b投影到A的列空间上”和“把三个原始数据点(t1,b1),(t2,b2),(t3,b3)移到了同一条直线上”,这两个概念是等同的。

关联2:误差向量e

向量b减去投影向量p,就能得到误差向量e(他垂直于C(A)):

\large e=b-p=\begin{bmatrix} 1\\ 1\\ 3 \end{bmatrix} - \begin{bmatrix} 5/7\\ 13/7\\ 17/7 \end{bmatrix} = \begin{bmatrix} 2/7\\ -6/7\\ 4/7 \end{bmatrix}

向量e中的每个元素值的含义是什么? 实际上就是图(a)中,每个b与p之间的误差


(全文完)

作者 --- 松下J27

参考文献(鸣谢)

1,线性代数及其应用,侯自新,南开大学出版社,1990.

2,Linear Algebra and Its Applications(Fourth Edition) - Gilbert Strang(文中大部分插图来自于这本书)

3,Introduction to Linear Algebra,Fifth Edition - Gilbert Strang

格言摘抄:

        吾尝终日而思矣,不如须臾之所学也;吾尝跂而望矣,不如登高之博见也。---《劝学》

(配图与本文无关)

版权声明:文中的部分图片,文字或者其他素材,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

这篇关于线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/516746

相关文章

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit