用人话讲明白梯度下降Gradient Descent(以求解多元线性回归参数为例)

本文主要是介绍用人话讲明白梯度下降Gradient Descent(以求解多元线性回归参数为例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1.梯度
  • 2.多元线性回归参数求解
  • 3.梯度下降
  • 4.梯度下降法求解多元线性回归


梯度下降算法在机器学习中出现频率特别高,是非常常用的优化算法。

本文借多元线性回归,用人话解释清楚梯度下降的原理和步骤。


1.梯度

梯度是什么呢?

我们还是从最简单的情况说起,对于一元函数来讲,梯度就是函数的导数

而对于多元函数而言,梯度是一个向量,也就是说,把求得的偏导数以向量的形式写出来,就是梯度

例如,我们在用人话讲明白线性回归LinearRegression一文中,求未知参数 β 0 \beta_{0} β0 β 1 \beta_{1} β1时,对损失函数求偏导,此时的梯度向量为 ( ∂ Q ∂ β 0 , ∂ Q ∂ β 1 ) T (\frac{∂Q}{∂\beta_{0}}, \frac{∂Q}{∂\beta_{1}})^T (β0Q,β1Q)T,其中:

∂ Q ∂ β 0 = 2 ∑ 1 n ( y i − β 0 ^ − β 1 ^ x i ) \frac{\partial Q}{\partial \beta_{0}}=2\sum_{1}^{n}{(y_{i}-\hat{\beta_{0}}-\hat{\beta_{1}}x_{i})} β0Q=21n(yiβ0^β1^xi)

∂ Q ∂ β 1 = 2 ∑ 1 n ( y i − β 0 ^ − β 1 ^ x i ) x i \frac{\partial Q}{\partial \beta_{1}}=2\sum_{1}^{n}{(y_{i}-\hat{\beta_{0}}-\hat{\beta_{1}}x_{i})x_{i}} β1Q=21n(yiβ0^β1^xi)xi

那篇文章中,因为一元线性回归中只有2个参数,因此令两个偏导数为0,能很容易求得 β 0 \beta_{0} β0 β 1 \beta_{1} β1的解。

但是,这种求导的方法在多元回归的参数求解中就不太实用了,为什么呢?


2.多元线性回归参数求解

多元线性回归方程的一般形式为:

y = β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β p x p y={\beta}_{0}+{\beta}_{1} {x}_{\mathbf{1} }+{\beta}_{2} {x}_{2 }+\cdots+{\beta}_{p}{x}_{p} y=β0+β1x1+β2x2++βpxp
可以简写为矩阵形式(一般加粗表示矩阵或向量):
Y = X β \boldsymbol{Y}=\boldsymbol{X}\boldsymbol{\beta} Y=Xβ
其中, Y = [ y 1 y 2 ⋮ y n ] , X = [ 1 x 11 ⋯ x 1 p 1 x 21 ⋯ x 2 p ⋮ ⋮ ⋮ 1 x n 1 ⋯ x n p ] , β = [ β 0 β 1 ⋮ β p ] \boldsymbol{Y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right], \boldsymbol{X}=\left[\begin{array}{cccc}1 & x_{11} & \cdots & x_{1 p} \\ 1 & x_{21} & \cdots & x_{2 p} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n 1} & \cdots & x_{n p}\end{array}\right], \boldsymbol{\beta}=\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p}\end{array}\right] Y=y1y2yn,X=111x11x21xn1x1px2pxnp,β=β0β<

这篇关于用人话讲明白梯度下降Gradient Descent(以求解多元线性回归参数为例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/505158

相关文章

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

基于@RequestParam注解之Spring MVC参数绑定的利器

《基于@RequestParam注解之SpringMVC参数绑定的利器》:本文主要介绍基于@RequestParam注解之SpringMVC参数绑定的利器,具有很好的参考价值,希望对大家有所帮助... 目录@RequestParam注解:Spring MVC参数绑定的利器什么是@RequestParam?@

SpringBoot接收JSON类型的参数方式

《SpringBoot接收JSON类型的参数方式》:本文主要介绍SpringBoot接收JSON类型的参数方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、jsON二、代码准备三、Apifox操作总结一、JSON在学习前端技术时,我们有讲到过JSON,而在

JAVA虚拟机中 -D, -X, -XX ,-server参数使用

《JAVA虚拟机中-D,-X,-XX,-server参数使用》本文主要介绍了JAVA虚拟机中-D,-X,-XX,-server参数使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录一、-D参数二、-X参数三、-XX参数总结:在Java开发过程中,对Java虚拟机(JVM)的启动参数进

解读docker运行时-itd参数是什么意思

《解读docker运行时-itd参数是什么意思》在Docker中,-itd参数组合用于在后台运行一个交互式容器,同时保持标准输入和分配伪终端,这种方式适合需要在后台运行容器并保持交互能力的场景... 目录docker运行时-itd参数是什么意思1. -i(或 --interactive)2. -t(或 --

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

css渐变色背景|<gradient示例详解

《css渐变色背景|<gradient示例详解》CSS渐变是一种从一种颜色平滑过渡到另一种颜色的效果,可以作为元素的背景,它包括线性渐变、径向渐变和锥形渐变,本文介绍css渐变色背景|<gradien... 使用渐变色作为背景可以直接将渐China编程变色用作元素的背景,可以看做是一种特殊的背景图片。(是作为背

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组