动态规划——斐波那契数列模型:1137.第N个泰波那契数

2023-12-16 16:20

本文主要是介绍动态规划——斐波那契数列模型:1137.第N个泰波那契数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 题目描述
  • 算法原理
    • 1.状态表示(最重要的)
      • 什么是状态表示?
      • 状态表示怎么来的呢?
      • 本题的状态表示
    • 2.状态转移方程(最难的)
      • 本题的状态转移方程
    • 3.初始化(后三步完成剩下百分之一的细节问题)
      • 本题的初始化
    • 4.填表顺序
      • 本题的填表顺序
    • 5.返回值
      • 本题返回值
  • 代码实现
  • 空间优化

题目描述

题目链接:1137.第N个泰波那契数
在这里插入图片描述

算法原理

如果我们采用动态规划的思想来解决这道问题的话,我们的过程一般是分五步来解决的:

1.状态表示(最重要的)

什么是状态表示?

首先我们要先确定一个状态表示。那第一次接触动态规划的同学可能就有些疑问了,什么是状态表示呢?通俗的来讲就是,我们会先定义一个dp表,这个dp表可能是一维数组或者二维数组,简单举例一下:
在这里插入图片描述
我们做动态规划的流程就是搞一个dp表,然后把他填满,其中一个值可能就是我们的答案,状态表示指的就是dp表中的某个值它所代表的含义(感性理解)。如果我们去直接去百度动态规划的状态表示是什么的话,会出现一堆概念性的专有名词,要是没一两周根本搞不懂,而且会很痛苦,很容易放弃,所以刚开始学的时候我们有一个感性的认知就可以了。
在这里插入图片描述

状态表示怎么来的呢?

(PS:很多教学视频上来就给一个状态表示,而不说明状态表示怎么来的,那后续的步骤则显得毫无意义)

  1. 题目要求
  2. 经验(一两百道题)+题目要求
  3. 分析问题的过程中,发现重复子问题(表示动态规划的方式)

第三个看起来也有点抽象,但问题不大,前期跟紧我的节奏,先理解前两步,慢慢的等我们动态规划学的熟练了就会进而引出第三种了。当然也会有其它的,但我这个系列只会涉及这三个。

本题的状态表示

dp[i]:表示第i个泰波那契数的值

2.状态转移方程(最难的)

dp[i]等于什么,状态转移方程就是什么。所以我们要想尽一切办法来让之前的状态或者之后的状态来表示dp[i]。

本题的状态转移方程

题目非常贴心,已经给出:dp[i]=dp[i-1]+dp[i-2]+dp[i-3]

3.初始化(后三步完成剩下百分之一的细节问题)

根据状态转移方程来填表,保证填表的时候不越界
在这里插入图片描述

本题的初始化

dp[0]=0,dp[1]=1,dp[2]=1

4.填表顺序

为了填写状态的时候,所需要的状态已经计算过了。

本题的填表顺序

从左向右

5.返回值

题目要求+状态表示

本题返回值

dp[n]

代码实现

class Solution {
public:int tribonacci(int n) {//时间复杂度和空间复杂度都为O(N)//处理一些越界情况if(n <= 1)return n;else if(n == 2)return 1;//1.状态表示vector<int> dp(n + 1);//2.初始化dp[0] = 0,dp[1] = 1,dp[2] = 1;//3.填表顺序for(int i = 3;i <= n;i++){dp[i] = dp[i - 3] + dp[i - 2] + dp[i - 1];}//返回值return dp[n];}
};

空间优化

在这里插入图片描述
每次滚动则之前的数可以舍去。

class Solution {
public:int tribonacci(int n) {//滚动数组空间优化——空间复杂度从O(N)变为O(1)//处理一些边界情况if(n <= 1)return n;else if(n == 2)return 1;//初始化int a = 0,b = 1,c = 1,x = 0;//填表顺序for(int i = 3;i <= n;i++){x = a + b + c;a = b;b = c;c = x;}//返回值return x;}
};

这篇关于动态规划——斐波那契数列模型:1137.第N个泰波那契数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/501120

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同