LLM之RAG理论(一)| CoN:腾讯提出笔记链(CHAIN-OF-NOTE)来提高检索增强模型(RAG)的透明度

本文主要是介绍LLM之RAG理论(一)| CoN:腾讯提出笔记链(CHAIN-OF-NOTE)来提高检索增强模型(RAG)的透明度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文地址:https://arxiv.org/pdf/2311.09210.pdf

       检索增强语言模型(RALM)已成为自然语言处理中一种强大的新范式。通过将大型预训练语言模型与外部知识检索相结合,RALM可以减少事实错误和幻觉,同时注入最新知识。然而,目前的RALM面临以下几个关键挑战:

  • 噪声检索(Noisy retrieval):不相关的检索文档可能会误导模型并导致错误的响应;
  • 未知鲁棒性(Unknown robustness):RALM很难确定他们是否有足够的知识来回答问题,当缺乏信息时,应该默认为“未知”;
  • 缺乏透明度(Lack of transparency):目前尚不清楚RALM是如何利用检索到的信息来生成回应的。

       为了解决这些问题,腾讯人工智能实验室的研究人员在他们的论文《CHAIN-OF-NOTE: ENHANCING ROBUSTNESS IN RETRIEVAL-AUGMENTED LANGUAGE MODELS》中提出了一个新的框架,称为笔记链(CON)。

一、笔记链概述

       笔记链的关键思想是通过对检索到的每个文档进行总结和评估,让模型生成阅读笔记,然后再生成最终的回应。此记录过程可以增强模型的以下能力:

  • 评估检索到文档的相关性
  • 识别可靠信息与误导信息
  • 过滤掉无关或不可信的内容
  • 认识到知识差距并回应“未知”

具体而言,给定一个问题和k个检索到的文档,“笔记链”会进行如下操作:

  • 笔记生成:为每个文档创建1个阅读笔记,然后分析其相关性;
  • 综合:整合笔记中的见解来确定最终回应。

       这种方法反映了人类的推理——将问题分解为更小的步骤。笔记为模型的思维过程提供了透明度,并提高了其噪声和未知稳健性。

二、阅读笔记的类型

笔记链生成的笔记可分为三类:

  1. 相关(Relevant):文档可以直接回答问题,最终的回复只来自该文档;

  2. 无关但有用的上下文(Irrelevant but useful context):文档没有回答问题,但提供了有用的背景。该模型将其知识与上下文相结合可以推断出答案;

  3. 无关(Irrelevant):文档是无关的,模型缺乏知识来回答。默认响应为“未知”。

       该系统允许模型在直接检索信息、进行推断和承认其局限性之间取得平衡。

三、笔记示例

       笔记链(CON)框架根据检索到的文档与输入问题的相关性生成三种类型的阅读笔记。以下是每种类型的笔记的示例:

3.1 类型1——直接回答

输入问题:“法国首都是什么?”

检索文件:一篇讨论法国各个城市的文章。

生成的笔记:“正如文章中所提到的,法国的首都是巴黎。”

最后回应:“法国首都是巴黎。”

3.2 类型2——有用上下文

输入问题:“光合作用是如何工作的?”

检索文件:解释植物生物学基础的文本,不直接涉及光合作用。

生成笔记:“虽然该文件没有直接解释光合作用,但它提供了有关植物生物学的有用信息,表明光合作用是植物将光转化为能量的过程。”

最后回应:“光合作用是植物将光转化为能量的过程,包括叶绿素对光的吸收以及二氧化碳和水转化为葡萄糖和氧气。”

3.3 类型3——无关或未知

输入问题:“量子计算的最新进展是什么?”

检索文档:一篇讨论经典计算技术的文章。

生成的笔记:“检索到的文档不包括量子计算,而是专注于经典计算技术。该模型缺乏足够的信息来根据此文档进行回答。”

最终回应:“未知,因为现有文件没有提供量子计算最新进展的相关信息。”

       这些例子说明了CON框架如何处理不同类型的文档:直接使用相关文档中的信息,从上下文有用的文档中推断答案,并承认知识或无关信息中的差距。

四、训练模型

为了训练一个模型来生成阅读笔记,腾讯团队执行如下步骤:

  1. 使用ChatGPT为不同类型的笔记生成10K的训练数据;
  2. 使用这些数据对LLaMa-2模型进行微调,以增强模型记笔记的能力;

  3. 使用加权损失函数策略,将训练重点放在最终答案的准确性上。

五、评估笔记链

在几个QA数据集的实验表明:

  • 提高了QA性能: 从上表2可以看出,当使用检索到的文档时,Chain of Note的平均得分比标准RALM高+1.97 EM;
  • 增强了噪声鲁棒性:从上表3可以看出,在给定不相关的检索文档的情况下,与标准RALM相比,Chain of Note将EM得分提高了+7.9;
  • 更好的未知稳健性:从上表4可以看出,在域外问题上,笔记链将拒绝率提高了+10.5。

六、个案研究

让我们通过一个示例来了解笔记链的作用:

问题:《死侍2》是什么时候上映的?

文档1:讨论2018年6月1日在美国上映的《死侍2》。

文档2:提及《死侍2》于2018年5月10日首播,日期变更后于2018年8月18日上映。

标准RALM:2018年6月1日❌

带笔记链的RALM

文档1笔记:猜测《死侍2》于2018年6月1日在美国上映。

文档2笔记:明确实际发布日期为2018年5月18日。

回复:根据Doc 2,答案为2018年5月18日✅

      这展示了笔记链如何仔细分析文件,并确定最相关、最可信的细节,以产生正确的回应。

七、关键要点

  • 笔记链增强了RALM对噪声检索和未知场景的鲁棒性;
  • 记笔记为RALM推理过程提供了可解释性;
  • 平衡检索信息、进行推断和确认限制;
  • 分解复杂问题的简单而有效的方法。

参考文献:

[1] https://ai.plainenglish.io/unlocking-the-black-box-how-chain-of-note-brings-transparency-to-retrieval-augmented-models-rag-ae1ebb007876

[2] https://arxiv.org/pdf/2311.09210.pdf

这篇关于LLM之RAG理论(一)| CoN:腾讯提出笔记链(CHAIN-OF-NOTE)来提高检索增强模型(RAG)的透明度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/486635

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识