因营收额下降炒上任鱿鱼,福特找来Jim Hackett救火

2023-12-12 09:59

本文主要是介绍因营收额下降炒上任鱿鱼,福特找来Jim Hackett救火,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

福特因为在Mark Fields在任的三年内股价下跌40%,董事会与投资人决定换帅,由Jim Hackett担任CEO重任。

福特换帅Jim Hackett,因营收额下降炒上任鱿鱼

福特最近在人事上有了较大的变动,前任CEO Mark Fields在职的三年中,福特的股价下滑了40%,引起了投资人和董事会的强烈不满,决定任用福特前任部门主管Jim Hackett担任CEO重任。

这项人事变动的决定是在福特年度董事会后的两周内做出的,在当时,时任CEO Mark Fields就遭到了严厉的批评。而现年62岁的Jim Hackett曾长期负责家具巨头Steelcase的管理,去年进入福特管理层的他是公司“smart mobility”项目主管,该项目包括了无人驾驶技术的运作。尽管已经在自驾驶汽车研发上投入巨大的资金,但福特还是很难追赶上更大的汽车制造商通用汽车或是科技巨头谷歌,后者的自动驾驶汽车已经进入到部署和测试阶段。福特希望在2021年前开发推出完全自动驾驶的汽车。

截止到今年,福特已经发生了多起汽车安全召回事件,这也让福特汽车的质量状况亮起了红灯。另外,福特公司近期还经历了在小型和中型汽车销量的大幅下滑。一些华尔街分析师建议福特应该放弃投资组合中一些不盈利的部分。

据悉,今年福特的汽车销售量下降了25%,下降幅度远远高于汽车板块的总体销售下降量,这使得福特在汽车销售方面的利润大幅下降。

福特换帅Jim Hackett,因营收额下降炒上任鱿鱼

福特官方表示,本次人事变动除了Hackett接任Fields外,还有其他的人员变动。在福特重要的美洲业务,其原业务主管Joseph R. Hinrichs将会升任全球运营执行副总裁,福特欧洲的业务主席James D. Farley Jr.已被任命为公司CTO,而Marcy Klevorn将会接替Hackett之前的职位。


原文发布时间: 2017-05-23 12:05
本文作者: 星星
本文来自云栖社区合作伙伴镁客网,了解相关信息可以关注镁客网。

这篇关于因营收额下降炒上任鱿鱼,福特找来Jim Hackett救火的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/484187

相关文章

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

AI学习指南深度学习篇-带动量的随机梯度下降法简介

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随

AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介

AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介 在深度学习领域,优化算法是至关重要的一部分。其中,随机梯度下降法(Stochastic Gradient Descent,SGD)是最为常用且有效的优化算法之一。本篇将介绍SGD的背景和在深度学习中的重要性,解释SGD相对于传统梯度下降法的优势和适用场景,并提供详细的示例说明。 1.

随即近似与随机梯度下降

一、均值计算 方法1:是直接将采样数据相加再除以个数,但这样的方法运行效率较低,要将所有数据收集到一起后再求平均。 方法2:迭代法 二、随机近似法: Robbins-Monro算法(RM算法) g(w)是有界且递增的 ak的和等于无穷,并且ak平方和小于无穷。我们会发现在许多强化学习算法中,通常会选择 ak作为一个足够小的常数,因为 1/k 会越来越小导致算法效率较低

2.4梯度下降与量化策略优化

1. 梯度下降法的基本原理 欢迎来到“梯度下降”的世界!听上去有点像在爬山对吧?其实,这个算法的灵感确实来自爬山。想象你在一个山谷中迷路了,周围雾蒙蒙的,看不清楚路,只能摸着石头一步一步往下走。每走一步,你都选一个让你往更低的地方移动的方向,直到你走到了山谷的最低点——这就是梯度下降法的核心思想! 梯度的概念:多变量函数的变化方向 说到梯度,首先得明白它是个什么鬼。简单来说,梯度是一个向量,

LabVIEW布尔值比较与信号状态上升沿下降沿检测

在 LabVIEW 编程中,布尔值的比较不仅是逻辑运算的重要组成部分,还广泛应用于信号的上升沿和下降沿检测。通过理解 True > False 这样的基本表达式,以及如何在程序中检测信号的状态变化,开发者可以有效地控制系统行为,并实时响应信号变化。 布尔值在 LabVIEW 中的数值表示 在 LabVIEW 中,布尔值有明确的数值对应: True:数值表示为 1。 False:数

Lasso回归的坐标下降法推导

Lasso回归的坐标下降法推导 目标函数 Lasso相当于带有L1正则化项的线性回归。先看下目标函数: 这个问题由于正则化项在零点处不可求导,所以使用非梯度下降法进行求解,如坐标下降法或最小角回归法。 坐标下降法 本文介绍坐标下降法。  坐标下降算法每次选择一个维度进行参数更新,维度的选择可以是随机的或者是按顺序。  当一轮更新结束后

坐标下降和块坐标下降法

坐标下降和块坐标下降法 坐标下降法(英语:coordinate descent)是一种非梯度优化算法。算法在每次迭代中,在当前点处沿一个坐标方向进行一维搜索以求得一个函数的局部极小值。在整个过程中循环使用不同的坐标方向。对于不可拆分的函数而言,算法可能无法在较小的迭代步数中求得最优解。为了加速收敛,可以采用一个适当的坐标系,例如通过主成分分析获得一个

梯度下降算法实现

分治方法:先分成n×n个点进行搜索,选择最低的点,对最低的点再分成n×n份再次进行搜索,选择最小的值,反复如此,找到最小值。但是这对于凸函数是较为有用的,对于不规则的函数,可能搜索到的是极小值点(局部最优点),而不是最小值点(全局最优点)。 Gradient Descent Algorithm : 梯度下降算法(贪心思想,局部最优) Gradient : 梯度,梯度大于0上升,梯度小于0下降,所