随即近似与随机梯度下降

2024-09-03 01:44

本文主要是介绍随即近似与随机梯度下降,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、均值计算

  • 方法1:是直接将采样数据相加再除以个数,但这样的方法运行效率较低,要将所有数据收集到一起后再求平均。
    在这里插入图片描述

  • 方法2:迭代法
    在这里插入图片描述

二、随机近似法: Robbins-Monro算法(RM算法)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

    1. g(w)是有界且递增的
    1. ak的和等于无穷,并且ak平方和小于无穷。我们会发现在许多强化学习算法中,通常会选择 ak作为一个足够小的常数,因为 1/k 会越来越小导致算法效率较低 。尽管在这种情况下第二个条件没有被满足,但算法仍然可以有效地工作,因为实际迭代的次数是有限。
    1. 关于系数 η ,表明 η 的期望为0,方差有界

RM算法是个迭代式的算法,对 w* 第 k 次的估计是 wk,第 k+1 次的估计是 wk+1,则有
在这里插入图片描述在这里插入图片描述最开始的时候我输入 w1,得到 g~1,然后带入到下式的右侧,得到 w2,再把 w2 输入,再得到 g~2,再带入下式的右侧,得到 w3,以此类推。最后我们会得到 {wk} 的序列和 {g~k} 的序列。RM 算法就是通过这样一种方式来求解的

随机梯度下降(SDG)

SGD 是 RM 算法的特殊情况,mean estimation 算法也是 SGD 的特殊情况
在这里插入图片描述
求解这个问题有多种方法,下面给出三种方法:

方法1:梯度下降(gradient descent,GD)

因为我们的目标是最小化一个目标函数,所以要用梯度下降;如果目标是最大化一个目标函数,就要用梯度上升。
在这里插入图片描述
在这里插入图片描述
缺点:难以获得期望值(expected value)。对此有两种解决方法:第一种方法,如果有模型就可以求出来;第二种方法,如果没有模型,用数据求

方法2:批量梯度下降(batch gradient descent,BGD)
在这里插入图片描述
缺点:每次迭代都需要对每个 wk 进行多次采样。在每次更新 wk 的时候都要采样 n 次或者多次。这在实际中还是不实用,那么来到了方法3

方法3:随机梯度下降(stochastic gradient descent,SGD)
在这里插入图片描述

这篇关于随即近似与随机梯度下降的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131667

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

csu1328(近似回文串)

题意:求近似回文串的最大长度,串长度为1000。 解题思路:以某点为中心,向左右两边扩展,注意奇偶分开讨论,暴力解即可。时间复杂度O(n^2); 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring>#include<string>#inclu

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

AI学习指南深度学习篇-带动量的随机梯度下降法简介

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随

HDD 顺序和随机文件拷贝和存储优化策略

对于机械硬盘(HDD),顺序拷贝和随机拷贝涉及到磁头的移动方式和数据的读取/写入模式。理解这些概念对于优化硬盘性能和管理文件操作非常重要。 1. 顺序拷贝 定义: 顺序拷贝指的是数据从硬盘的一个位置到另一个位置按顺序连续读取和写入。这意味着数据在硬盘上的位置是线性的,没有跳跃或回溯。 特点: 磁头移动最小化:由于数据是连续的,磁头在读取或写入数据时只需要在磁盘的一个方向上移动,减少了寻道时

什么是GPT-3的自回归架构?为什么GPT-3无需梯度更新和微调

文章目录 知识回顾GPT-3的自回归架构何为自回归架构为什么架构会影响任务表现自回归架构的局限性与双向模型的对比小结 为何无需梯度更新和微调为什么不需要怎么做到不需要 🍃作者介绍:双非本科大四网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发,目前开始人工智能领域相关知识的学习 🦅个人主页:@逐梦苍穹 📕所属专栏:人工智能 🌻gitee地址:x

算法:将数组随机打乱顺序,生成一个新的数组

一、思路 核心:缩小原数组的可随机取数范围 1、创建一个与原数组长度相同的新数组; 2、从原数组的有效的可取数范围 (不断缩小) 中随机取出一个数据,添加进新的数组; 3、将取出的随机数与原数组的最后一个数据进行置换; 4、重复步骤2和3。 二、代码 public class ArrayRandomTest {//将数组随机打乱顺序,生成一个新的数组public static int